


How to Use This Book

This book will teach you how to do physics problems. The explanation of not only how to do a problem but
why we do it a certain way teaches you not just a collection of solved problems, but a collection of methods that
can be used, modified, and built upon to do other physics problems. As researchers and teachers, we know that
the key to solving new and challenging problems is contained within the collection of techniques already
learned for solving simpler problems. Seeing a problem solved and knowing why it was done in a certain
manner is the best way to learn how to solve related, more difficult problems.

This book is not a presentation of every problem you are going to encounter on a test. It is a presentation of the
methods that we have found to work for large groups of problems. If you develop the techniques we describe
for solving problems then you will know how to successfully attack the problems you will encounter on the
tests. This is the book you should have as a reference when you are doing your homework problems. It will
show you how to work the problems and explain why they are being done the way they are.

The topics in this book are in the order of most physics texts. Each chapter begins with a theoretical discussion.
Problems are mixed in with the discussion as soon as possible. These problems follow the development of the
theory. In this way you do not have to assimilate a large amount of conceptual material before begining to work
problems.

A “standard” route is followed for problems wherever possible. In this way you will learn that broad categories
of problems worked in a standard “logical” way always produce correct solutions. Our emphasis is on logic and
order in solving problems. We avoid methods that may be quick and have limited application to problem
solving in favor of possibly longer solutions that have broad applications and always work. We believe that a lot
of good physics can be taught in problems so we use problems to illustrate and expand a topic and sometimes
introduce new concepts. For this reason problems and text are integrated with a minimum of artificial barriers
between them.

The book is intended as a complement to either the calculus-based or the non-calculus-based elementary
physics course. It has been our experience that calculus concepts can be introduced into the traditional non-
calculus course and used in the development of concepts. Conceptually, calculus is not difficult and when it is
introduced in the context of a physics problem it is even easier. We use calculus concepts to explain theory, but
calculus is rarely used in problems. Even those students who are taking calculus concurrent with their physics
course usually learn calculus concepts in physics before they see them in their calculus course.

In those instances where calculus is needed, the problems and paragraphs are marked with a calculus icon. Even
the student without formal calculus training should read these sections. They are often explained in a simple
manner so that the calculus does not present a problem.

The chapters on electricity and magnetism are also excellent background chapters for someone taking an
undergraduate course in Electricity and Magnetism.

We have used two significant figures for the physical constants and most of the numbers in the problems.
Results are given to two, and occasionally three, significant figures. Using two significant figures cuts down on
the clutter in the problems, allowing the technique to receive greater exposure. Do not be concerned in working
through the problems if your answers do not agree exactly with ours. This is no doubt due to when, or if,
intermediate calculations were rounded off. SI units are used nearly universally throughout the book.



How to Excel in Your Physics Course

Most students realize that putting off studying until the day before the exam and then cramming at the last
minute is not efficient. Some students do this anyway, because so far they have gotten away with it. Perhaps
most of the other students you previously competed with had poor study skills. This may have allowed you to
adopt poor or non-existent study habits and still keep up, or even get good grades if you are naturally a better
student. Now that you are in college, the courses will be more difficult and it is to your advantage to develop a
more organized approach to handling your course work.

Successful people generally have three things in common. They make effective use of their time, they set goals
for themselves, and they have a positive attitude. Physics is a challenging course for most students. It will take a
well-organized consistent effort to do well in this course, but success in a challenging area is a worthwhile goal.

General Approach for Studying Physics

Many people believe the following: more work and more study results in higher grades. This is not necessarily
so. You certainly must be willing to make a certain commitment of time and energy to this course, but the key
to academic success is concentrating your efforts on the right things at the right times. You may have noticed
that those students who receive the highest grades are not necessarily the ones who work the greatest number of
hours. Some students may boast that they have studied all night for an exam, but don't be impressed by this
habit. “Allnighters” and the like are almost always the result of procrastination and bad study habits. Getting no
sleep before an exam is foolish and it usually takes several days to recover from this kind of activity. By taking
advantage of the study techniques that follow you can achieve higher grades with less effort.

The most efficient way of learning Physics by attending lectures, problem solving sessions, and performing
supplementary readings is to:

1. Do a quick reading on the topics to be covered in the lecture before attending class. Ten or fifteen minutes
may be sufficient for a one hour lecture. The purpose here is to generally familiarize yourself with the topics to
be discussed. Perhaps you can identify one or two questions or key points to listen for during the lecture.

2. Attend class and take notes. Attend all of the classes. Someone is paying for these classes so BE THERE! Be
on the alert for any indication by the instructor of possible test questions. If the professor says something like
“This is very important, you may be seeing this again,” make a special note of this in your notebook.

3. Review your lecture notes. Don't save this step until a few days before the exam. It is far more efficient to
review your notes a little bit at a time during the semester than to try and do it all at once. At this point you
should also do a more detailed reading of the text to fill in any gaps in your class notes.

4. This may be the most important step. Do the homework problems regularly. In other courses it may be
sufficient to read the text and review your notes, but in Physics you must be able to work the problems. You
don't learn problem solving skills by just reading examples of solved problems, you must do the problems
yourself. By doing the homework problems on a regular basis you will be able to identify areas that you need
more work on well in advance of the test. Physics problems can be difficult. Therefore, when you set out to
work problems do not set yourself the task of working a certain number of problems, but rather set out a certain
amount of time to work on problems.



5. Compile a formal set of notes and prepare a detailed outline. The general strategy here is that a number of
short exposures to manageable pieces of the course is more efficient than one long exposure to a large amount
of material. As you progress through the course, you first get your information in an initial reading of the
material, then again in the lecture, then again in a second reading, and yet again in an organizing session where
you prepare a detailed outline. The detailed outline is essential to success on the exams. It contains the
examination questions. Your main preparation for the exam will be to extract the questions and prepare to
answer them. Notice we did not say “study for the exam;” the studying for the exam has been going on all
along. That is what you have been doing as you make up your formal notes, outline, etc. What you have done
with this systematic approach is to reproduce the notes and outline that the instructor is using. If you are
reasonably good at it, you will have as good a source of exam questions as the instructor.

How to Prepare for a Physics Test

Examine the shelves of any bookstore catering to career oriented students and you will find books with titles
such as: How to Pass the Real Estate Licensing Exam, or How to Succeed on the S.A.T. Examining these books
will help you to develop your personal exam-taking program. One common thread in all books on how to pass
particular exams is to know the questions in advance. Most writers of these types of books are in the business of
training people in their particular areas, so they are close to the people who are making up the exams. This gives
them a ready source of test questions, and knowing the questions (or at least the type of questions) is half way
to knowing the answers. Therefore we make the following suggestions:

1. Almost all instructors in physics will place some problems on the test that are very similar to examples that
they have done in class. Many times you may encounter the same problem with different numbers. This makes
it very important to attend every class so as not to miss the opportunity to see possible test questions. If you do
miss class, always get the notes from a friend.

2. Another frequent occurrence is for slight modifications of homework problems to appear on the test. Join a
study group that does homework problems together. This can be more efficient than grinding away on your
own. Don't waste too much time with a study group unless it is productive. Your final preparations for a test
should be done privately so that you can concentrate on developing a plan for taking the test.

3. Find sample physics tests given by your instructor for the past few years. It is a good bet that most of the
questions for the exams in the near future will be very much like those of the immediate past.

4. Some physics problems involve mathematics that can be deceptively easy. For example, if you expect
problems involving the manipulation of logarithms or exponents be sure you practice the mathematical
operations and entering the numbers into your calculator so you don't have to stop and figure out how to take
exponents during the test. Practice any unfamiliar mathematical operations before the test.

Timing and the Use of the Subconscious.

Have you ever experienced the frustration of having a conversation with someone and forgetting momentarily a
name or fact that is very familiar to you? Usually, shortly after such an experience, the name or fact will come
to you when you are not consciously trying to recall it. Another variation of this same phenomenon is when a
person doesn't feel right about making a decision immediately upon receiving or defining a problem. They like
to “sleep on it.” Both of these situations have a common characteristic - the use of the subconscious. The fact
that solutions are often presented to us in the absence of active work on the problem at the moment we receive
the solution indicates that another part of the brain was analyzing the pertinent information and providing a
solution. We call this part of the brain the subconscious, and this part of the brain is very effective at solving
problems.



Here are some tips for effectively using the subconscious:

1. Your subconscious will not work without information. You must consciously sort out all of the facts or
information for a particular problem. If you are having difficulty with a problem, try to get straight in your mind
what you do know about the problem. Then also define in your mind what specifically you don't know or don't
understand about the problem.

2. Put conscious effort into the problem up to the point of confusion. Many people grind and grind on a problem
after this point and accomplish very little. It is more efficient for you to plan your study time so that you do not
put yourself in a situation where your only choice is to grind on a problem.

3. After you have done all you can consciously on the problem, “Put it in the back of your mind.” Don't keep
worrying about it. It is important that you clear your mind so that you can accept the solution when it comes.

4. Be sure you have a deadline for the solution.

5. When a solution comes, be sure to act on it quickly, so you can go on to something else. Sometimes instead
of a solution to the problem you will receive a request for more information. The problem may still be
unanswered, but will be clearer to you. What could be happening here is that your subconscious has analyzed
the problem and found an essential piece of information missing and is asking you for it.

The study program that we have outlined, consisting of regular review of lecture notes, frequent working of
homework problems, and periodic updates of your formal notes and outline, makes maximum use of your
subconscious. The periodic intake of new material and the required conscious review serves to keep you
subconsciously analyzing and fitting new information into the body of knowledge you are accumulating.

Here would be a good approach to practicing for a Physics test:

ED - 4: (Exam day minus four) Prepare a sample exam from your outline.
This may consist of questions from previous exams given by the
instructor and variations of homework problems or examples
done in class. Keep in mind that this is probably the same way
that the professor is making up your exam.

ED - 3: Study for your first sample exam. Go over your notes, text, and
homework problems.

ED - 2: Take your first sample exam. As soon as possible after the exam,
do a detailed review concentrating on the weaker areas. Make up
your final sample exam.

ED - 1: Take your final sample exam. Again review the difficult points of
this sample exam. Get a good night's sleep tonight.

ED: Do as little as possible on the day of the exam. You may want to
quickly review your outline or a couple of difficult points.



You will notice that the bulk of the work in preparing for a test this way consists of writing and taking sample
tests. It is planned that way. One of the common fallacies in preparing for exams is to prepare for the wrong
thing. Many students will prepare for a Physics exam by reading the text or by reading solutions to problems. A
Physics exam, however, is not a reading exam but a writing and problem-solving exam. If you have not
practiced writing solutions to typical problems, you have not prepared as well as you might for the exam.

The second advantage to taking sample tests is that it increases your speed in writing solutions to types of
problems that are likely to be on the test. This will allow you more time during the test to spend on unexpected
or more troublesome problems.

Strategies to Use During a Physics Test

You are now entering the test room. You are well prepared to take the test. You have taken practice tests and
know what to expect on the exam. You have gotten a good night's sleep the night before and eaten a healthy
breakfast that will provide you with the energy needed for good concentration. You have a positive attitude. At
this point worrying about how you will do on the exam is useless. Study time is over. You now need to
concentrate on the strategies that will get you the highest possible score on the test. Here are some suggestions:

1. It is usually a good idea to take a minute or two at the beginning of the exam to look over all the questions.
Look for the type of questions that you expected and have practiced and do these first. Save the hardest
questions for last. It can be very frustrating to run out of time working on question # 4 only to realize that you
didn't even get a chance to start question #5 that was much easier.

2. Have a rough idea of how much time you should be spending on each question. Sometimes certain questions
will count for more points than others and the instructor should provide that information on the test.

3. If you are required to memorize a lot of formulas you may want to take the time at the beginning of the test to
write down a few of the more complicated ones next to problems that involve those formulas as you are
glancing over the test. Later during the test, your mind may be cluttered with formulas and it may be harder to
correctly recall one of the more complicated ones.

4. Always include the units of your answer (miles per hour if the answer is a velocity for example). Don't make
the mistake of not including units. This is very important to almost all physics teachers.

5. Write your work clearly when you are solving a problem. It is easier for the professor to give you partial
credit if he can clearly see that you did the problem correctly and just made a minor computational error.

6. Think about your answer to a problem. Does the answer make sense? For example, if you are solving for the
length of one side of a right triangle and you are given the hypotenuse, your answer better not be a length
greater than the hypotenuse. It is very important to be able to think like this on a test. This will help you to catch
a lot of mistakes like missing a minus sign.

7. Unfortunately some instructors give tests that are much too long for a given period of time. It seems as if they
are more interested in measuring how fast you can do physics than how well you can do physics. Try to find out
in advance of the test if your professor's tests are like this. If the cutoff for an A is usually 75% instead of 90%
then you need to be aware of this. This will save you from panicking as you run out of time on the test.
Remember that you may be able to work for partial credit on that last answer. On these kinds of tests it is very
important to keep your cool and try to get as many points as you possibly can. Stay positive all the way through
and give it your best shot!



8. Make sure you know the difference between radian mode and degree mode on your calculator when taking a
test that includes trigonometry (See the Mathematical Background Section).

9. Avoid prolonged contact with other students immediately before the exam. Many times the nervous tension,
frustration, defeatism, and perhaps wrong information expressed by fellow students can be harmful to your
performance.

10. Multiple Choice Tests: Find out if there is any penalty for a wrong answer. If not, don't leave any question
unanswered. Find out if there is any partial credit for showing your work on a separate sheet of paper. One thing
to think about for multiple choice tests is how the professor is generating the choices other than the correct
answer. Here are some typical wrong choices on a multiple choice Physics test:

a) A formula requires the input of length in meters. In the problem the length is specified in centimeters.
The wrong answer is off by a factor of 100.

b) A formula requires the input of a radius. Diameter is given in the problem. The wrong answer is off by a
factor of two.

c) A question asks for a velocity. Choice A is 10 lbs. This is the correct number, but the wrong units.
Choice D is 10 miles per hour, the correct answer. The lesson here is to look carefully at all the choices.

Your Self Image as a Student

To a large extent, many people perform at the level of their own self image. One thing to get straight in your
mind at the beginning of the course is that you are capable of mastering the material in your Physics course.
Some students get stuck in the mode of saying something like, “I have always been a C student.” There is a
simple logical argument that will show you that the C student in physics or mathematics or any subject where
skill is built from course to course, is not getting C's because of their understanding of the material, but because
that is how they view themselves, consciously or unconsciously. In a series of three to five sequential
mathematics courses, for example, it is virtually impossible to go from one course to the next, let alone a
sequence of several, without eventually mastering the material in each previous course. Think back to your first
math course where you were taught how to add, subtract, multiply, and divide. At some point in that course you
may have thought that you couldn't understand certain concepts. By now you have mastered those skills.
College Physics is the same way. You are mentally capable of understanding and even mastering basic physics.
Now it is true that different people learn at different speeds. You may need to spend a little extra time on
physics or, more likely, make more effective use of your time.

At this point you need to set a goal for yourself in your Physics course. The first question is how important is
Physics in your academic program. If you are a Biology major and you are taking Physics only because it is a
general requirement, then your primary goals should be to get the best grades in your Biology courses, since
that is your major. If one of your goals is to have a high G.P.A., then you should strive for an A or at least a B.
If your major is Physics or Engineering then you should definitely go for an A in this course. Write down your
goals and check them off as they are accomplished. Your goals for the first part of a Physics course may look
something like this:

Main Goal: An A in Physics I

week 1: establish a schedule for reading text, reviewing notes and
doing homework problems.



week 2: investigate the possibility of joining a study group

week 3: find out if past exams from this professor are available: find
out how many points it will take to make an A on the first test

week 4: prepare and take sample exams for first test

The purpose of writing down your goals is not to create more work, but to keep you focused on the most
important things that you need to accomplish as the semester progresses. Please remember that all of the study
techniques outlined in this chapter are designed to make achieving higher grades easier for you. The sooner you
become more organized and focused on your goals, the sooner you will begin to realize that you are capable of
impressive accomplishments with a reasonable amount of effort.

Perhaps Physics is a favorite area of study that you may wish to pursue in the future or perhaps you are
primarily interested in the most efficient way to make it through this course. Whatever you choose for your
major area of study, find something you enjoy and pursue excellence. Give it your best today, and better
tomorrow. We wish you success.



Preface

The purpose of this book is to show you how to do physics problems. It is only through application of concepts
to solving problems that we can know for certain that we understand something. Nowhere is this more true than
in a physics course where performance is measured almost exclusively by your ability to do problems.

This book is not a collection of problems. Neither is it a text. It is an attempt to strike a balance between theory
and problem solving with heavy emphasis on the problem solving. As such it is intended to complement your
course text. Generations of physics students, the authors included, have often lamented, concerning their
physics courses, “I understood everything in lecture and the text but I can't do the problems.” This book will
help you do the problems.

Learning physics is different from most other disciplines. Most disciplines can be learned by reading and
listening, with mastery demonstrated by writing. Physics is not like that. Reading and listening are the first step,
but mastery is demonstrated by doing problems. Writing comes easy to most people. Working problems in
mathematical symbolism is not so easy to most, and it is not something we do regularly. Learning physics
requires learning to do the problems of physics not by writing about them but by manipulating mathematical
symbols in the correct manner.

The book was started around 1980 (by RMO) and was provided in rough form to his students in the elementary
physics sequence to help them understand concepts and give them practice and confidence in working
problems. The favorable response from those students provided motivation to continue to expand the number
and extent of the topics. In 1984 the problems were used (by DMO) as an aid in the elementary physics courses
he was taking. Since then the collection of problems and text has been expanded by both authors and refined
through further use by their students.

It is the sincere desire of the authors that this book help you to better understand physical concepts and work the
associated problems. We would like to thank the many students who have contributed to this work by using the
material and offering their suggestions. Also the fine staff at McGraw-Hill, especially our editor, Arthur
Biderman, have contributed greatly to the clarity of presentation.

ROBERT M OMAN
ST.PETERSBURG, FLORIDA

DANIEL M.OMAN
ORLANDO,FLORIDA



Introduction
Mathematical Background

The purpose of this chapter is to provide you with a review of and reference for the mathematical techniques
you will need in working the physics problems in this book. Some topics may be familiar to you while others
may not. Depending on the mathematical level of your physics course, some topics may not be of interest to
you. Each topic is covered in sufficient depth to allow you to perform the mathematical manipulations
necessary for a particular problem without getting bogged down in lengthy derivations. It is not our intention to
teach mathematics, but to show you how to apply specific mathematical procedures to physics problems.

The most efficient use of this chapter is for you to do a brief review of the chapter, spending time on those
sections that are unfamiliar to you and that you know you will need in your course, then refer to specific topics
as they are encountered in the solution to problems. With this reference you should be able to perform all the
mathematical operations necessary to complete the problems in your physics course. If you need or desire more
depth in a particular topic go to an algebra or calculus text.

Solving Equations

The simplest equations to solve are the linear equations of the form ax + b = 0 which have as solution x = -b /
a. You should be very familiar with these.

The next most complicated equations are the quadratics. The simplest quadratic is the type that can be solved by
taking square roots directly, without any other manipulations.

An example is 4x2 = 36, which is first divided by 4 to read x2 = 9 and square roots taken to produce x = ±3. Both
plus and minus values are legitimate solutions. The reality of the physical problem producing the equation may
dictate that one of the solutions be discarded.

The next complication in quadratic equations is the factorable equations such as x2 - x - 6 = 0, which can be
factored to (x - 3)(x + 2) = 0. The solutions, the values of x that make each parentheses equal to zero and satisfy
the factored equation, are x = 3 and x = -2.

If the quadratic cannot be solved by factoring, the most convenient solution is by quadratic formula, a general
formula for solution of any quadratic equation in the form ax2 + bx + c = 0.

The solution according to the quadratic formula is

See any algebra book for a derivation of this formula.

The physics problems you are doing should not produce square roots of negative numbers. If your solution to a
quadratic produces any square roots of negative numbers, you are probably doing something wrong in the
problem.

Certain cubic equations such as x3 = 8 can be solved directly producing the single answer x = 2. Cubic
equations with quadratic (x2) and linear (x) terms can be solved by factoring (if possible) or approximated using
graphical techniques. You most likely will not encounter cubic equations in your early physics courses.



Another category of equations you will encounter is simultaneous equations: two independent equations in two
unknowns and later three equations in three unknowns. We'll start with two equations in two unknowns. Take
two equations

The most direct way of solving these equations is by substitution, solving one equation for one unknown and
substituting in the other equation. Looking at these two equations the easiest variable to solve for is x in the
second equation

Now substitute equation 2) in equation 1) and solve

Now put this value of y in either original equation and solve for x

These answers can be checked by substituting into both the original equations.

Another method, often involving less manipulation, is addition and subtraction where the equations are
multiplied in such a way that upon addition or subtraction one of the variables adds away leaving one equation
in one unknown. Start with the equations used previously and write equation 1) and -2 times equation 2), and
add

This is the same value obtained above and by substitution in either original equation will produce the value for
x. The equations could be handled differently by making the y terms add away. Multiply equation 1) by 4 and
equation 2) by 3, and add

The use of determinants in solving simultaneous equations is discussed in the next section.

Determinants



A determinant is a square array of numbers. Determinants are very convenient for solving two equations in
two unknowns and three equations in three unknowns. The determinant technique for solving equations, called
Cramers Rule, can be derived from the addition and subtraction method of solving simultaneous equations. Use
as an example the equations of the previous section.

For the master, or main, determinant the array is the coefficients of the variables.

The numeric equivalent of the determinant is found by multiplying 2 times -4 and subtracting the multiplication
of 3 times 1. The numeric equivalence of a 2 by 2 determinant is this first diagonal multiplication minus the
second diagonal multiplication. With a little practice this goes very quickly.

Now form the x associated determinant by replacing the x coefficients with the constants.

Perform the same diagonal multiplication minus diagonal multiplication operation: multiply 7 times -4 and
subtract the multiplication of 3 times -3.

The y associated determinant is formed by replacing the y associated coefficients with the constants and
multiplying and subtracting.

The solutions are

 and 

If you need practice with determinants write down some sets of equations and solve them by substitution and
determinants. After a few manipulations with determinants you will be able to solve simultaneous equations
very quickly. Some calculators that solve systems of equations with Cramers Rule ask you to enter the numbers
in a determinant format.

Three by three determinants require a little more manipulation. Consider three equations with the master
determinant



There are several ways to find the values of this determinant. We'll look at one simple method called expanding
the determinant, using the first row and the associated determinants obtained by crossing off the rows and
columns associated with each number in the top row. This is easier to see than explain.

Look at the top row of (the 3 by 3) D and write each term times the determinant obtained by blocking off the
row and column associated with that term. Also, alternate the signs of the three 2 by 2 determinants so the
second number, 1, is changed to -1. The two by two determinants are evaluated as before.

The x associated determinant is (again replacing the x coefficients with the constants)

The y associated determinant is

so

As an exercise find the z associated determinant and calculate z. The value of z = 3 can be verified from any of
the original equations.

With a little practice determinants can be a very quick way of solving multiple equations in multiple unknowns.

Determinants as applied to vector products are discussed in the chapter on vectors.

Binomial Expansions.

Squaring (a + b) is done so often that most would immediately write a2 + 2ab + b2.

Cubing (a + b) is not so familiar but easily accomplished by multiplying (a2 + 2ab + b2) by (a + b) to obtain a3

+ 3a2b + 3ab2 + b3.



There is a simple procedure for finding the nth power of (a + b). Envision a string of (a + b)'s multiplied
together, (a + b)n. Notice that the first term has coefficient 1 with a raised to the nth power, and the last term has
coefficient 1 with b raised to the nth power. The terms in between contain a to progressively decreasing powers,
n, n - 1, n - 2, …, and b to progressively increasing powers. The coefficients can be obtained from an array of
numbers or more conveniently from the binomial expansion or binomial theorem

The factorial notation may be new to you. The definitions are

As an exercise use the binomial expansion formula to verify (a + b)3.

The real utility of the binomial expansion in physics problems is in finding approximations to expressions
where a is equal to 1 and b is less than 1. For this case the expansion looks like

The terms of the series decrease depending on the value of b. Two or three terms is usually a good
approximation. Also the “next” term in the expansion is a good measure of the error in using a fixed number of
terms of the binomial expansion.

The classic use of this expansion is in special relativity where the expression  regularly occurs.

In special relativity v c is always less than one so this approximation. whether used algebraically or with
numbers, is very convenient.

Coordinate Systems

The standard two dimensional coordinate system works well for most physics problems. In working problems in
two dimensions do not hesitate to arrange the coordinate system for your convenience in doing a problem. If a
motion is constrained to move up an incline, it may be more convenient to place one axis in the direction of the
motion rather than in the traditional horizontal direction. If a projectile is dropped from an airplane, it may be
more convenient to place the origin of the coordinate system at the place where the projectile was dropped and
have the positive directions down, since the projectile and possibly the distances in the problem are given in
reference to the airplane.



Fig. I-1

Positions in the standard right angle coordinate system are given with two numbers. In a polar coordinate
system positions are given by a number and an angle. In the accompanying diagram it is clear that any point
(x,y) can also be specified by (r, θ). Rather than moving distances in mutually perpendicular directions, the r and
θ locate points by moving a distance r from the origin along what would be the +x direction, then rotating
through an angle θ. The relationship between rectangular and polar coordinates is also shown in Fig. I-1.

Three dimensional coordinate systems are usually right-handed. In Fig. I-2 imagine your right hand positioned
with fingers extended in the +x direction closing naturally so that your fingers rotate into the direction of the +y
axis while your thumb points in the direction of the +z axis. It is this rotation of x into y to produce z with the
right hand that specifies a right-handed coordinate system. Points in the three dimensional system are specified
with three numbers (x,y,z).

Fig. I-2

For certain types of problems, locating a point in space is more convenient with a cylindrical coordinate system.
Construct a cylinder with the central axis on the z-axis of a right-handed coordinate system.

A point is located by specifying a radius measured out from the origin in the +x direction, an angle in the x-y
plane measured from the x-axis, and a height above the x-y plane. Thus the coordinates in the cylindrical system
are (r,θ,z). The relation of these coordinates to x,y,z is given in Fig. I-3.



Fig. I-3

Spherical coordinates are also convenient in some problems. As the name suggests, points are located on a
sphere centered on the origin of an (x,y,z) system. The radius of the sphere is the distance from the origin (to the
sphere). The angle between this radius and the z-axis is one angle, and the angle between the x-axis and the
projection of r on the x-y plane is the other angle. Thus, the coordinates in the spherical system are (r,θ,φ). The
relation of these coordinates to x,y,z is given in Fig. I-4.

Fig. I-4

Trigonometry

The trigonometric relations can be defined in terms of right angle trigonometry or through their functions. The
basic trigonometric relations, as they relate to right triangles, are shown in the box.



Graphs of the trigonometric relations are shown in the Fig. I-5.

Fig. I-5

Angles are measured in radians. Radian measure is a pure number, the ratio of are length to radius to produce
the desired angle. Figure I-6 shows the relationship of are length to radius to define the angle.

Fig. I-6

The s = rθ is the basic relation in rotational motion.

The relation between radians and degrees is 2πrad = 360°

The sine of small angles can be approximated with the radian measurement of angles. Figure I-7 shows the sine
of a very small angle and the radian measure of the angle. Take the two sides of the triangle as equal to r. For
small angles this is nearly an isosceles triangle. The sine of the angle is

Fig. I-7

For small angles s is approximately h and the sine of the angle is nearly equal to the angle (measured in
radians). Take a small angle, π/30, which is equal to 6 degrees, and as an exercise find the sin 6° and π/30 and
verify that the error in using the radian rather than the sine is 2 parts in 1000 or 0.2%.

There are a large number of trigonometric identities that can be derived using geometry and algebra. Several of
the more common are in the box below.



Functions

It is helpful in visualizing problems to know what certain functions look like. The linear algebraic function (see
Fig. I-8 ) is y = mx + b, where m is the slope of the straight line and b is the intercept, the point where the line
crosses the x-axis.

Fig. I-8

The next most complicated function is the quadratic (see Fig. I-9), and the simplest quadratic is y = x2, a curve
of increasing slope symmetric about the y-axis. Quadratics are also called parabolas. Adding a constant a in
front of the x2 either sharpens (a > 1) or flattens (a < 1) the graph. Adding a constant to obtain y = ax2 + c serves
to move the curve up or down the y-axis. Adding a linear term, producing the most complicated quadratic,
moves the curve up and down and sideways. If a quadratic is factorable then the places where it crosses the x-
axis are obtained directly in factorable form. This discussion of parabolas is continued in the chapter on
projectile motion.

Fig. I-9

With a little experience you should be able to look at a function y = x2 + 2x - 8 (see Fig. I-9) and say that the x2

means it is a parabola, the coefficient of 1 means it has standard shape, and the other two terms mean that it is
moved up and down and sideways. Factor to y = (x + 4)(x - 2), and the curve crosses the x-axis at x = 2 and x = -
4. Because it is a parabola the curve is symmetric about x = -1.



Cubic curves have the general shape shown in Fig. I-10. Adding a constant term moves the curve up or down
the y-axis. A negative in front of the x3 term produces a mirror image about the x-axis. Quadratic and linear
terms in a cubic produce peaks and troughs in the curve.

Fig. I-10

Logarithms and Exponents

Logarithms and exponents are used to describe several physical phenomena. The exponential function y = ax is
a unique one with the general shape shown in Fig. I-11.

Fig. I-11

This exponential equation y = ax cannot be solved for x using normal algebraic techniques. The solution to y =
ax is one of the definitions of the logarithmic function: x = logay.

The language of exponents and logarithms is much the same. In exponential functions we say “a is the base
raised to the power x.” In logarithm functions we say “x is the logarithm to the base a of y.” The laws for the
manipulation of exponents and logarithms are similar. The manipulative rules for exponents and logarithms are
summarized in the box.

The term “log” is usually used to mean logarithms to the base 10, while “In” is used to mean logarithms to the
base e. The terms “natural” (for base e) and “common” (for base 10) are frequently used.

Derivatives



There are numerous definitions of the derivative, but the one that fits most physics problems best is that the
derivative of a function is another function that gives the slope of the original function at any point. Consider a
function f(x), often written as y = f(x), over an interval δx. The notation y = f(x) is mathematical symbolism that
says “a variable y is going to be described by certain operations on another variable x.”

Using the δ notation the general expression for slope is

This equation says that the slope of a function is the value of the function at a point x + δx minus the value of
the function at x all divided by the δx. This assumes the function is linear between x and x + δx; an
approximation that gets better as δx gets smaller. The slope defined this way is an average slope between x and
x + δx. The derivative is the general expression for the slope at any point, thus, it is a function that gives the
slope of another function at every point. The derivative, df/dx or f' is the limiting case of the slope where δx → 0

Fig. I-12

Now apply this procedure to several functions.

Fig. I-13

The function is a constant so f(x + δx) = f(x) and the slope is zero as is evident from the graph.

Fig. I-14



<><><><><><><><><><><><>

Fig. I-15

The slope of the curve y = x2 - 5 is 2x. Just pick a value of x, and the slope is two times this value.

<><><><><><><><><><><><>

As an exercise verify that the derivative of y = x3 is 3x2.

The derivative of power law functions is very easy with the procedure described above. After performing a few
of these, we can come to the conclusion that for any power law y = cvn, the general expression for the slope
(derivative) is y' = cnvn-1. Listed below are the derivatives for power laws as well as some trigonometric,
exponential, and logarithmic functions. All of these can be derived using the procedures employed above.

DERIVATIVES

Function Derivative

xn nxn-1

sinαx αcosαx

cosαx -αsinαx

tanαx αsec2 αx = α / cos2 αx

eαt αeαt

In αx 1/x

One other useful rule of differentiation is the chain rule. If y is written in terms of x and x is written terms of t,
it is possible to write dy/dt through the simple expediency of a chain derivative.



and since x is written in terms of t, the derivative dy/dt can be written in terms of x or t.

Integrals

Integrals can be viewed two ways, as the area under a curve or as the inverse operation to the derivative. Look
upon the derivative as an operation performed on a function. If y = 3x2 + 2x - 1 is the function, then the
derivative is d by dx of y or

The inverse of this operation is called integration. The actual operation of integration is seen by writing the d/dx
operation as a total derivative dy = (6x + 2)dx, and the integral is

so =6x/2+2x+const=3x+2+const  the original function plus a constant.

Just as the derivative of a power function y = cvn is dy = cnvn-1dv the integral of

The constant is necessary because constants are lost in differentiation! Evaluating the constant requires some
knowledge of the physical problem.

The other definition of the integral is as the area under a curve. This definition is most convenient in many
physical problems, especially those involving work. The integrals of several curves are done below. The
integrals are represented by the area under the curves between two specific values.

Fig. I-16

The area under the curve is  A quick glance at the graph of y = 3 confirms this
calculation.



Fig. I-17

The area under the curve is 

The shaded area consisting of a rectangle and triangle is equal to 6.

Fig. I-16

As an exercise approximate the area under the curve. The area between x = 3 and x = 4 can be approximated
with a rectangle and triangle. Find the value of y at x = 3 and the area of the rectangle. Find the value of y at x =
4 and find the approximate area of the triangle. These two areas are very close to the area found from the
integral.

<><><><><><><><><><><><>

The integrals of these three curves are what is known as definite integrals, ones that have specific limits. As
such they do not need constants. The indefinite integrals, those without limits, need the constant. Listed below
are the integrals of some common functions.



INTEGRALS

Function Integral

xn (n = -1) (n + 1)-1xn+1

1/x Inx

sinαx -α-1cosαx

cosαx α-1sinαx

tanαx α-1 In&bbar;cosαx&bbar;

eαx α-1eαx

Inαx xInαx - x

Average Value of a Function.

In Fig.I-18 the shaded area is the value of the integral. This area could be represented by a rectangle with one
side of the rectangle equal to 1, the length of the integral, from 3 to 4, and the other side, the average height of
the function between 3 and 4. This average height is the average value of the function over the interval from 3
to 4. From the geometry then we can say that the average value of the function times the length of the integral
equals the area or value of the integral. Rearranging then, the average value of a function over a particular range
is the value of

the integral over the range divided by the range. Applying this to the function y = x2 - 5 the average value of the
function between 3 and 4 is

At x = 3 the function has value 4, and at x = 4 it has value 11, so 22/3 is a reasonable value for the average.

Likewise, the average value of the function y = x3 - 3 between 1 and 3 is



Chapter 1
Vectors

This chapter serves a dual purpose. First, it will help you to do the addition and subtraction of vectors in the
chapter in your text on vectors and the vector problems in the chapters on motion and forces. Second, it will
serve as a reference for those topics involving vector products, especially the definitions of work and torque
encountered in mechanics.

Certain physical quantities such as mass or temperature are described with a number called a scalar. Other
quantities, such as displacement, velocity, or force, have a direction associated with them and are called
vectors. Operationally, a vector is an arrow oriented in space with the length (of the arrow) representing the
number and the orientation, the direction. Vectors can be placed anywhere on a coordinate system so long as
they maintain their required length and orientation.

Number Plus Angle and Components

A vector can be described with a number and an angle as A = 23<37°. In performing the basic mathematical
operations of addition, subtraction, multiplication, and division, it is more convenient to write vectors in
component form. If A were placed with the tail (of the vector) at the origin of a coordinate system, then the x
and y components could be written as shown in Fig. 1-1.

Fig. 1-1

It is very important in the use of vectors to be able to go from the number plus angle format to component
format quickly and accurately. Before going any further in this chapter review the basic trigonometric relations
and the formulas for going from number plus angle to components and vice versa (Fig. 1–2). And if you are at
all unsure of yourself make up a 3 × 5 card with figure and formulas and review it several times a day until you
can perform the operations without hesitation.

A vector A = A <0 has components as shown in Fig. 1–2. (The bold type represents the vector, and the normal
type represents the number associated with that vector.) If the components, ax and ay, are given, then the number
plus angle form can be obtained with the trigonometric relations on the left side of Fig. 1–2.

Fig. 1–2



The vector A (see Fig. 1-1) can be reconstructed from the components ax = 18.4 and ay = 13.8.

 and 

1-1 Diagram the vector C = 47<193° and write the components.

Solution: The components are cx = 47 cos193° = -45.8 and cy = 47 sin 193° = -10.6.

Fig. 1–3

Taking the sine or cosine of the 193° angle will produce the appropriate negative numbers, but drawing a figure
and using the principle angle is a better procedure. Less mistakes are made from figures than from the readout
of calculators. When the vector and its components are drawn on the coordinate system there can be no mistake
that 45.8 and 10.6 are both negative.

Unit Vectors in Two Dimensions

The use of unit vectors simplifies the mathematical operations on vectors. In two dimensions unit vectors are
vectors of unit value directed in the +x and +y directions.

Fig. 1–4

The vector A (Fig. 1-1) would be written as A = 18.4i + 13.8j and C (problem 1-1) would be written as C = -
45.8i - 10.6j

1–2 Add the vectors A and C.

Solution: The addition of A and C is now accomplished by adding the components

<><><><><><><><><><><><>

1–3 Subtract C from A.

Solution:                 



<><><><><><><><><><><><>

1–4 Diagram T = A–C and write in number plus angle form.

Solution: The diagram is started by drawing the components on the coordinate system. With the components
the magnitude and angle can be calculated T = 68.7<20.8°.

Fig. 1–5

1–5 Add the vectors A = 13<50°, B = 15< -60°, and C = 17<20°.

Solution: Diagram each vector along with the components.

Fig. 1–6

The sum of these vectors R = A + B + C is R = 1.2i–11.5j. This resultant vector is diagrammed in Fig. 1–7
along with the magnitude and angle.

Fig. 1–7

The vector is R = 11.6< -84°

The key to getting vector addition problems correct is to use multiple diagrams. Most mistakes in vector
problems are sign mistakes. And the way to avoid sign mistakes is to use diagrams extensively.

1–6 Find the resultant of the two forces F1 = 800N<47° and F2 = 600N<140°.



Solution: Place the force vectors with components on the same diagram (Fig. 1–8).

Fig. 1–8

The components of the resultant can be diagrammed directly. If the diagrams are done in this manner it is not
necessary to use large angles and misread calculator readouts. Note that component forces in the y direction are
both positive, while F1x and F2x are in opposite directions. Taking forces acting in the +x and +y directions as
positive, and forces acting in the -x and -y directions as negative, the result of the addition of these two forces is
86 in the +x direction and 971 in the +y direction. Using the diagram it is not necessary to keep track of the plus
and minus signs. The diagram makes clear how the components should be added to produce the correct
resultant. The resultant written in magnitude and angle form F = 975N<85°

Fig. 1–9

There are two different types of products of vectors. One results in a scalar, and the other results in a vector.
The next two sections discuss these products. Depending on the order of topics in your course, you may want to
put off reading these sections until they come up in mechanics.

Scalar or Dot Product

The dot product (A .B) produces a scalar. There are two definitions of the dot product. The most easily
visualized is

where θ is the angle between A and B. This definition can be viewed as the projection of A on B or the
component of A in the direction of B times the magnitude of B.



Fig. 1–10

The second definition fits with the unit vector notation

Following A.B = AB cosθ, i.i = 1.1 cos0=1° = 1, and i.j = 1.1cos90° = 0.

Following A.B = axbx + ayby, i.i = 1.1, and i.j = 0.

1–7 Form the dot product of A = 23<37° and B = 14< - 35°.

Solution: Using the first definition A . B = A . B cosθ= 23.14 cos72° = 100.

The second definition of the dot product requires the components of the vectors. The components of A (from
Fig. 1-1) are ax = 18.4 and ay = 13.8. The components of B are in Fig. 1–11.

Fig. 1–11

The dot product is

More dot product problems will be done in the chapters where dot products are used in the calculation of work.
Work, as defined in mechanics, is the product of the component of an applied force in the direction of a
displacement and that displacement. W = F.s

The cross product (A × B) produces a vector. As with the dot product there are two definitions of the cross
product. The simplest definition to understand is that the cross product of A and B produces a vector of
magnitude AB sin φ in a direction normal (perpendicular) to the plane of A and B with φ the angle between A
and B. The specific direction is obtained by rotating A into B (crossing A into B or A cross B) again using the
fingers of the right hand naturally curling (closing) from A to B with the thumb pointing in the direction of the
new (product) vector. This is the same procedure as for finding the z direction in an x-y-z right-handed
coordinate system. A right-handed coordinate system with the three unit vectors is shown in Fig. 1–12.

Practice visualizing i × j to produce k and j × k to produce i. The angle between the unit vectors is 90°, and their
magnitude is 1; so the resultant vector has magnitude 1 and is in the direction given by this “vector crossed into
another vector” procedure. Practice pointing your fingers in the direction of the first vector, curling them into
the second vector with your thumb pointing in the direction of the result of this “cross” product until you can
quickly see that i × k = -j and k × i = +j.



Fig. 1–12

The definition of torque in mechanics is lever arm times force times the sine of the angle between them.
Another way of saying this is that torque is lever arm times the component of the force at right angles to the
lever arm. In mathematical terms

Fig. 1–13

with the magnitude of the torque given by T = rF sin θ and the direction of the vector given by the r × F role.
The F sin θ term can be viewed as the component of F perpendicular to r.

In Fig. 1–13 the vectors are arranged as the sides of a parallelogram with F sin θ the height of the
parallelogram. The product rF sin θ is the magnitude of r × F and is also the area of the parallelogram (a base
times the height) formed by r and F.

The second definition of the cross product is mathematically easier but harder to relate to physical problems.
This definition is expressed as a determinant.

1–8 Form the cross product of A = 23<37° and C = 47 <193°.

Solution: The vectors and their components are shown in Fig. 1–14. Crossing A into C defines the angle as
156° so that AC sin 156° = 440 with the direction out of the paper as give by the right-hand rule.



Fig. 1–14

Doing the same problem with determinants

The numeric difference, 440 versus 437, is due to rounding the components to three significant figures.

In simple problems it is easier to find the cross product from the geometric definition. In more complicated
problems, or where it is difficult to be sure of the direction of the vector product, the determinant form is more
convenient.



Chapter 2
Motion in One Dimension

The motion of a particle (ballistic missiles, golf balls, and gas molecules are all examples of particles) is
described by giving position, velocity, and acceleration usually as a function of time. For convenience in getting
started we confine the discussion to one dimension. We also need to differentiate between distance and
displacement, and speed and velocity.

If a dog fetching a stick runs in a straight line (the +x direction) 30m to pick up the stick and returns (the -x
direction) 26m then the total distance traveled is 56m but the displacement is +4m. Distance generally means
total distance traveled while displacement is the actual difference between end point and beginning.

If the dog were to execute the fetching in 8s then the speed of the dog would be the total distance traveled
divided by the time or 7m/s while the velocity, defined as the displacement divided by the time, would be
0.5m/s.

In a word equation form this is

The “δ” notation is read as “a change in” or “a small change in.”

Let's look at some simple relationships between position and velocity. Remember we are confined to one
dimension. The simplest relation is x = constant. As shown in Fig. 2-1, the particle doesn't move. There is no
velocity or acceleration because x does not change with time.

The first complication is x = t (Fig. 2-2). The particle moves equal increments in x in equal increments of time.
That is, the change in x from t = 1 to t = 2 is the same (same change) as when t goes from t = 2 to t = 3. The
velocity then is a constant. And by definition the acceleration is zero.

Fig. 2-1

Fig. 2-2



The next complication is x = t2. This graph is shown in Fig. 2–3. In this quadratic relationship, the simple
definition of velocity begins to break down. Between t = 0 and t = 1 the velocity is (1-0)/(1-0) = 1. Between t =
1 and t = 2 the velocity is (4-1)/(2-1) = 3 and on and on with the velocity changing depending on the time
interval chosen. Clearly the acceleration is not a constant. This velocity calculation fits our present definition
and is equivalent to drawing a straight line between points on the smooth curve of x versus t.

Fig. 2–3

Fig. 2–4

Calculating velocity this way presents a problem because depending on the interval we will get different
answers for the velocity. To find the velocity at t = 1, we found x at t = 1 and x at t = 2 and performed the
velocity calculation. This is not a good approximation to the velocity at t = 1 because the average is between t =
1 and t = 2. A better approximation would be to take values of x between t = 1 and t = 1.1. Even better would be
to take values between t = 0.99 and t = 1.01. And for even better approximations just shorten the time interval
centered about t = 1. As the interval gets smaller we will get a better and better measure of velocity. In Fig. 2–4
the slope of the straight line from x = 1 to x = 4 represents the average velocity between x = 1 and x = 4. The
slope of the straight line tangent to the curve at x = 1 represents the velocity at x = 1.

Instantaneous Velocity and Acceleration



A more versatile definition of velocity is δx/δt, where the interval δt is very small and centered about the time
where the velocity is desired. This approach leads to a general method for obtaining an expression for velocity
that can be evaluated at any point rather than going through the numeric calculation whenever we want a
velocity.

In words, this definition is stated as the instantaneous velocity which is the value of δx/δt as δt approaches
zero. In equation form this is written as

This definition of the derivative as the limit of δx/δt as δt approaches zero is the slope of the tangent to the
curve evaluated at the point in question. Thus if we want to find the velocity of any particle traveling according
to a polynomial relation between x and t all we need is a general technique for finding the slope of the tangent to
the polynomial at any point.

The instantaneous acceleration is defined as the value of δv/δt as δt approaches zero. In equation form this is

The instantaneous acceleration is the slope of the tangent to the curve of v versus t.

The general expression for the slope of any polynomial is discussed in the Introduction,  Mathematical
Background. For a polynomial of the form x = ctn the expression for the slope at any point is cntn-1. Stating this
in calculus terms; for any function x = ctn, the derivative of the function is cntn-1. This can be verified in the
case of the parabola by taking successively smaller intervals of δt and δx at any point t to verify that the slope at
any point is 2t.

Kinematic Equations of Motion.

The kinematic equations of motion are derived under the assumption of constant acceleration. While this may at
first seem to be a restriction, there are a large number of problems where the acceleration is a constant. The
simplest and most obvious are falling body problems, that is, problems involving bodies falling on (or near) the
surface of the earth where the acceleration due to gravity is a constant. Falling body problems are taken up in a
separate chapter. In the derivation of the kinematic equations of motion a good image to keep in mind is that of
falling bodies.

Starting with the assumption of constant acceleration we can write 

which can be rearranged to vf = v0 - at.

Usually the f subscript is dropped to read v = v0 + at.

Now defining the average velocity as 



and the displacement as 

and substituting for vavg with the previous equation 

and further substituting for v = v0 + at. we arrive at x = x0 + v0t + (1/2)at2.

And if  is solved for t and substituted into 

then we get 

and upon rearranging 

Summarizing, these four kinematic equations of motion are written as

The first three equations relate displacement, velocity, and acceleration in terms of time while the fourth
equation does not contain the time.

Now let's apply these four equations to some typical problems. Remember that the kinematic equations of
motion allow us to describe the position, velocity, and acceleration of a mass point.

2-1 A train starts from rest (at position zero) and moves with constant acceleration. On first observation the
velocity is 20m/s and 80s later the velocity is 60m/s. At 80s, calculate the position, average velocity, and the
constant acceleration over the interval.
Solution: Diagram the problem.

Fig. 2–5

Calculate the acceleration:

Calculate the distance traveled over this 80s:



The average velocity is

If the acceleration is constant then the average velocity is the average of 20m/s and 60m/s, or 40m/s, and at an
average velocity of 40m/s and 80s, the distance traveled is 3200m.

<><><><><><><><><><><><>

2-2 For the situation of problem 2-1, calculate the position of the train at 20s.

Solution:

<><><><><><><><><><><><>

2–3 For the situation of problem 2-1 find the time required for the train to reach 100m

Solution:  so 

This is a quadratic equation in t. Without units the equation is 

and has solutions 

The negative answer is inappropriate for this problem so take t = 4.5s.

<><><><><><><><><><><><>

2–4 For the situation of problem 2-1 find the velocity of the train at 120m.

Solution:

<><><><><><><><><><><><>

2–5 Two vehicles are at position x = 0 at t = 0. Vehicle 1 is moving at constant velocity of 30m/s. Vehicle 2,
starting from rest, has acceleration of 10m/s2. A typical question of this situation is “Where do they pass?”

Solution: First diagram the situation.



Fig. 2–6

The question “Where do they pass?” translated into algebra means “What is the value of x when they pass?”
This can be determined by writing equations for the position of each vehicle and

equating   and 

Setting x1 = x2  gives the time when they pass as 30t = 5t(t-6) = 0; so the vehicles pass at t = 0 and t = 6.  Putting
t = 6s in either equation for x (x1 or x2) gives 180m as the distance.

<><><><><><><><><><><><>

2–6 For the situation in problem 2–5, when do the vehicles have the same velocity?

Solution: In algebra this means to set the equations for velocity equal (v1 = v2)  and solve for the time.
Remember that three of the four equations of motion are functions of time so most question are answered by
first calculating the time for a certain condition to occur.

Now that we know when, we can calculate where they have the same velocity. Use either equation for position
and t = 3.0s

<><><><><><><><><><><><>

2–7 For the situation of problem 2–5. what is the position, velocity, and acceleration of each vehicle when
vehicle 2 has traveled twice the distance of vehicle 1?

Solution: The time when this occurs is when x2 = 2x1: 5t2 = 60t or 5t(t - 12) = 0

This gives times of t = 0 and t = 12. The time t = 0 is correct, though uninteresting. The time t = 12 is the
physically interesting answer.

At t = 12:

From the original statement of the problem, v1 = v10 = 30m/s and a1 = 0.

Now solve for the remaining variables for the second vehicle by substitution



From the original statement of the problem a2 = 10m/s.

<><><><><><><><><><><><>

2–8 Two trains are traveling along a straight track, one behind the other. The first train is traveling at 12m/s.
The second train, approaching from the rear, is traveling at 20m/s. When the second train is 200m behind the
first, the operator applies the brakes producing a constant deceleration of 0.20m/s2. Will the trains collide, and if
so where and when?

Solution: First, diagram the situation. Our strategy will be to write down the equations for each train using
equations (2-1) through (2–6) and the information provided in the problem. Take t = 0 when the brakes are
applied and the first train is 200m ahead of the second. This makes the position of the first train 200m at t = 0
(x10 in equation 2-2).

Fig. 2–7

The question as to whether the trains collide means: “Is there a real (time) solution to the equation resulting
from setting x1 = x2.

If there are no real solutions to this equation then the trains do not collide. Drop the units and write 0.10t2 - 8t +
200 = 0  which is solved by quadratic formula

Since there are no real solutions to this equation there are no times when the trains collide.

<><><><><><><><><><><><>

2–9 Change problem 2–8 by giving the second train an initial velocity of 25m/s. This will give a real time for
the collision. Find the collision time.

Solution: The situation is now as shown in the Fig. 2–8.



Again setting the expressions for x1 and x2 equal and dropping the units produces 200 + 12t = 25t - 0.10t2 or
0.10t2 - 13t + 200 = 0 with solutions

Fig. 2–8

The two times correspond to when x1 = x2.  The earliest time is the first coincidence and the end of the (physical)
problem. The position at this time can be obtained from either expression for x.

 Verify this distance by using x2.

The velocity of the second train at collision is

The relative velocity (between the two trains) is v = 1.4m/s.

The two times are the result of the quadratic in t.  The two solutions occur when the curves cross. The equation
for x1 = 200 + 12t is a straight line of slope 12 starting at 200. The equation for x2 = 25t - 0.10t2 is a parabola that
opens down. Figure 2–9 (not to scale) shows the two curves.

While the “mathematics” produces two times, the reality of the problem dictates the earlier time as the one for
the “collision.”

Fig. 2–9



Chapter 3
Falling Body Problems

The kinematic equations of motion for constant acceleration, equation 2-1 and equations 2–3 through 2–6 of the
previous chapter. can be applied to a large collection of problems known as “falling body problems,” problems
where the constant acceleration is the acceleration due to gravity on the surface of the earth. These equations
from the previous chapter are rewritten here for your convenience.

3-1 Consider a ball dropped from the top of a 40m tall building. Calculate everything possible.

Solution: “Calculate everything possible” is an unusual request. Usually early in your study of falling body
problems, there is a problem that asks for something that does not at all seem like it has anything to do with the
information given. It's almost like asking “What color is the building?” When this happens, and it probably will,
the way to do the problem is to calculate what you can and let the information you generate lead you through
the problem. Let's apply this approach to this problem. First, diagram the problem as shown in Fig. 3-1. Place
the origin at the top of the building with displacement, velocity, and acceleration (g) all positive down.

Fig. 3-1

Since most of the kinematic equations contain the time, this is usually one of the first things to calculate. Use
equation 3–4 to find the time for the ball to strike the ground.

Knowing the time we can calculate the velocity from equation 3-2.

Alternatively we can use equation 3–4.



NOTE: This last equation is a better one to use because it relies on original data rather than calculated data. If
there had been an error in the time calculation it would have been repeated in the v = v0 + gt equation. Also
round off errors are eliminated by using equations that rely on original data.

<><><><><><><><><><><><>

3-2 Now add a complication to problem 3-1 by throwing the ball down with an initial velocity of 8.0m/s. Find
the time for the ball to reach the ground and the velocity on impact.

Solution: Again diagram the problem as in Fig. 3-2. Note that in this problem the displacement and velocity are
positive down.

Fig. 3-2

The time of flight is from 40m = (8.0m/s)tn + (1/2)(9.8m/s2)t2,

which rearranged and without units is 4.9t2 + 8.0t - 40 = 0,

with solution by formula of 

The positive time is the obvious choice.

The velocity at the ground level is from

<><><><><><><><><><><><>

3-3 Add a different complication to problem 3-1. Throw the ball up from the top of the building with a velocity
of 8.0m/s. Find the time for the ball to reach the ground and the velocity on impact

Solution: Diagram the problem as in Fig. 3-3. Take x the displacement as positive down and the velocity as
negative up. It is important to remember that the sign of the velocity is opposite that of the displacement. It
doesn't matter whether the velocity is negative and the distance down positive or vice versa. It does matter that
the signs be opposite! Getting a sign wrong is the source of many, possibly most, errors in falling body
problems.



Fig. 3-3

Calculate the time of flight and note the signs: 

Rearranging and without units, this equation is 4.9t2 -8.0t -40 = 0,

with solution 

The positive time is the obvious choice. Note the numbers used for the solutions to the quadratics in time for
this and problem 3-2.

The velocity when the ball strikes the ground is

Notice that whether the v term is a positive or negative number, the result is the same. If the ball is thrown up
with a certain velocity or down with the same velocity, the velocity at impact is the same. This is to be expected
from the symmetry of the equations. If the ball is thrown up with a certain velocity, then on the way down it
passes the same level (from which it was thrown) with (numerically) that same velocity.

3–4 For the situation of problem 3-3 calculate the maximum height above the top of the building and the time
for the ball to reach maximum height.

Solution: The time for the ball to reach maximum height is from equation 3-2. Note that at maximum height the
velocity must be zero. Again watch the signs closely. It doesn't matter how you choose the signs, but the
acceleration has to be opposite the velocity. The equations

yield the same result, t = 0.82s. Because of symmetry, it takes the ball the same amount of time to reach
maximum height as it does for the ball to return to the original level.

Calculate the height above the top of the building from equation 3–5.

A thorough understanding of these four problems will keep you from making sign mistakes in problems like
these.



<><><><><><><><><><><><>

3–5 A bottle of champagne is dropped by a balloonist. The balloon is rising at a constant velocity of 3.0m/s. It
takes 8.0s for the bottle of champagne to reach the ground. Find the height of the balloon when the bottle was
dropped, the height of the balloon when the bottle reached the ground, and the velocity with which the bottle
strikes the ground.

Solution: Diagram the situation as shown in Fig. 3–4 being especially careful about the relative orientation
(algebraic signs) of displacement, velocity, and acceleration. There are several possibilities as regards the origin
and direction of the coordinate system. Take the origin at the height of the balloon when the bottle is dropped;
the position of the balloon at t = 0. Take the displacement as positive down. The main reason for taking the
displacement as positive down is that the acceleration is down and the initial velocity up making two positives
and one negative. As time goes on, however, displacement, velocity, and acceleration will be positive. This
choice seems to make for fewer minus signs and less chance for error with an algebraic sign.

Fig. 3–4

Write the equation for the height of the balloon (when the bottle was dropped) counting time from when the
bottle was dropped

The height of the balloon when the bottle reached the ground would be the height when the bottle was dropped
plus the amount the balloon rose in the 8.0s it took the bottle to reach the ground, or

                                290m + (3.0m/s)8.0s = 314m

The velocity on impact v = v0 + at = -3.0m/s + (9.8m/s2)8.0s = 75m/s.

This velocity could also be calculated using

<><><><><><><><><><><><>



3–6 A parachutist descending at a constant rate of 2.0m/s drops a smoke canister at a height of 300m. Find the
time for the smoke canister to reach the ground and its velocity when it strikes the ground. Then find the time
for the parachutist to reach the ground, the position of the parachutist when the smoke canister strikes the
ground, and an expression for the distance between the smoke canister and the parachutist.

Solution: Diagram the system as shown in Fig. 3–5 taking displacement, velocity, and acceleration as positive
down with the origin at the point where the canister is dropped.

The time for the smoke canister to reach the ground is from equation 3–4.

Fig. 3–5

Without units the equation is 4.9t2 + 2.0t - 300 = 0 with solutions

The time for the canister to reach the ground is 7.6s.

The velocity when it strikes the ground is

The time for the parachutist to reach the ground is from equation 3-2.

When the canister strikes the ground the parachutist has dropped (2.0m/s)7.6s = 15m and is 285m above the
ground.

The expression for the distance between the canister and the parachutist is



<><><><><><><><><><><><>

3–7 A coconut is dropped from a height of 60m. One second later a second coconut is thrown down with an
initial velocity. Both coconuts reach the ground at the same time. What was the initial velocity of the second
coconut?

Solution: In problems where there is a time delay it is usually best to calculate the position, velocity, and
acceleration of the first particle at the time when the second particle starts to move. In the train problem in the
previous chapter there was a position difference between the two trains at t = 0 that was easily translated into
the equations. It is possible to do time delay problems with a time differential in one set of equations. The
difficulty with this approach is that it is easy to get an algebraic sign wrong. If you say that the time for the
second particle is the time for the first plus the difference between them, then it is essential that the algebraic
sign of the difference be correct. It is much easier, especially when you are learning how to do problems with a
time delay, to do them in this slower, but inherently more accurate, method. First, calculate the state of the first
particle when the second one begins moving. Then, write the two sets of equations describing the motion with
this instant as t = 0.

Calculate the position and velocity of the first coconut at the end of one second, the time when the second one
starts.

Since everything (position, velocity, and acceleration) is positive down, orient the coordinate system for
positive down with the origin at the top. Now diagram the problem as in Fig. 3–6. At the instant the second
coconut is thrown down, the first coconut has position 4.9m, velocity 9.8m/s and acceleration 9.8m s2.

Fig. 3–6

Since both coconuts strike the ground at the same time use the conditions of the first coconut to find the total
time.

First calculate the velocity at impact of the first coconut.



The time for the second coconut to reach the ground is the same as the time for the first coconut to go from
4.9m to 60m or the time for the first coconut to go from 9.8m/s to 34.3m/s.

This comes from v = v0 + at. where v0 is v10, the velocity of the first coconut when the second one is thrown
down, and v is the velocity of the first coconut at the ground.

Now that we have the time for the second coconut to travel the 60m we can find its initial velocity from x - x0 =
v20t + (1/2) at2 where t is the total time for the second coconut.

Review this problem until all the different times and velocities are clear in your mind. Set up the problem and
do it yourself without reference and you will know you understand it.

3–8 A boat is passing under a bridge. The deck of the boat is 15m below the bridge. A small package is to be
dropped from the bridge onto the deck of the boat when the boat is 25m from just below the drop point. What
(boat) speed is necessary to have the package land in the boat?

Solution: Calculate the time for the package to fall the 15.0m using 

The boat must move at 25m/1.7s = 14m/s

<><><><><><><><><><><><>

3–9 You are observing steel balls falling at a constant velocity in a liquid-filled tank. The window you are using
is one meter high and the bottom of the window is twelve meters from the bottom of the tank. You observe a
ball falling past the window taking 3.0s to pass the window. Calculate the time required to reach the bottom of
the tank, after the ball has reached the bottom of the window.

Solution: The situation is diagrammed in Fig. 3–7.

The observed velocity is 1.0m/3.0s so 12m = (1.0m/3.0s)t or t = 36s

Fig. 3–7



<><><><><><><><><><><><>

3–10 In a situation similar to problem 3–9, the tank is filled with a different liquid causing the acceleration in
the tank to be 6.0m/s2 and the time to traverse the window, 0.40s. Calculate the height of the liquid above the
window, the time to reach the bottom of the tank, and the velocity of the ball when it reaches the bottom of the
tank.

Solution: Diagram the problem as in Fig. 3–8.

Fig. 3–8

From the data about the window, calculate the velocity of the ball at the top of the window.

The velocity at the bottom of the window is from

The time to reach the bottom of the tank is from x - x0 = vbt + (1/2)at2

and eliminating the units 

so

This (positive) time is for the ball to travel from the bottom of the window to the bottom of the tank.

Assuming the ball started at zero velocity the distance from the top of the liquid to the top of the window, xt,

will come from 



Solution: Diagram the problem as in Fig. 3–9. This is another example of a question that seems totally
unrelated to the information in the problem. When you don't know where to start, and you do not see a clear
path to the desired answer, simply start where you can, calculating what you can and hopefully learning enough
to answer the specific question.

Fig. 3–9

One of the first things we can calculate in this problem is the average velocity at the middle of the window.

This average velocity is the velocity of the ball on the way up (and on the way down) at the middle of the

window. Add this feature to the problem. With this information we can use  to find the distance
the ball rises above the midpoint of the window.

So the ball rises 2.5-0.7 = 1.8m above the top of the window.

Second Solution: View the ball as decelerating as it goes up past the window and find vb at the bottom of the

window from 

Velocity and displacement are taken as positive so acceleration is negative.

Now the distance to maximum height (velocity zero) is

Again the maximum height of the ball above the top of the window is 3.2m - 1.4m = 1.8m.



Chapter 4
Projectile Motion

In order to understand projectile motion you have to look at the motion in two directions with one direction
oriented in the direction of constant acceleration and the other direction at a right angle to it so as to form an x-y
coordinate system. In most problems, where an initial velocity and angle with the horizontal is given, the
velocity is written in component form.

Fig.4-1

Note that the motion is effectively separated into horizontal and vertical components (one in the direction of the
constant acceleration and one at a right angle to the acceleration).

The motion is a parabola in this coordinate system. The symmetry of parabolas (in this case parabolic motion) is
helpful in understanding the motion. (See the Introduction, Mathematical Background, for a discussion of the
properties of parabolas.) In order to better understand how the motion is separated and how the parabolic
property helps us to understand projectile problems we will do a simple problem without numbers just to get a
feel for the features of the motion. If you are familiar with the properties of parabolas you may want to skip this
discussion and go directly to the worked problems.

In Fig. 4-1 the velocity of the projectile is written in component form. The acceleration in the horizontal
direction is zero and in the vertical direction is due to gravity. With the velocity components, and the
acceleration in the direction of an axis, we can write the six equations describing acceleration, velocity, and
position in the x and y directions.

These equations are based on the kinematic equations of motion for constant acceleration:

The six equations are:

The equations for x and y can be looked upon as parametric equations in time. Parametric equations such as x =
f(t) and y = f (t) are equations that can be combined to produce y = f (x) or x = f (y). To find the position of the
particle in x–y, or y as a function of x, solve one equation for t and substitute into the other. In this case solve
x=… for t, as this is the simplest choice.



 Substitute into y = …      to obtain

This is of the form y = -ax2 + bx = x(-ax+b), which is a parabola that opens down and intercepts the y-axis
(makes y = 0) at x = b/a.

The range, or value of xwhen y = 0, can be determined from the factored form of this equation

which tells us that y = 0 at x = 0 and

or using the trigonometric identity 2sinθcosθ=sin2θ

The maximum range occurs for an angle of 45°, corresponding to sin 2θ= 1.

The main point of this discussion is that the motion is a parabola, and the properties of parabolas can be used in
solving problems in projectile motion. That the maximum range occurs at 45° is not surprising, and is generally
not of interest in problems. The expression for maximum range is only of passing interest, since the range is one
of the easier things to calculate in any problem.

Do not consume precious memory space memorizing formulas for the range or time of flight. If you work the
problems by first writing down the six equations describing the motion, then the time of flight, range, and many
other things are easily calculated.

In order to set up a problem in projectile motion, first orient one axis of a right angle (x–y) coordinate system in
the direction of constant acceleration. Remember to place the origin of the coordinate system and the positive
direction for x and y for (your) convenience in solving the problems. Then write equations for acceleration,
velocity, and position for each direction. Along with the symmetry of the motion, these equations can be used to
find the characteristics (position, velocity, and acceleration) of the projectile at any point in space or time. The
procedure is illustrated with a simple problem.

4-1 A soccer player kicks a ball at an initial velocity of 18m/s at an angle of 36° to the horizontal. Find the time
of flight, range, maximum height, and velocity components at t = 0, mid-range, and at impact.

Solution: The acceleration is down so set up the coordinate system with x horizontal (along the ground ) and y
vertical, and place v0 on the graph. Write the velocity in component form, and calculate vx0 and vy0.



Fig.4-2

Now, and this and this is the key to getting the problem right, write down the six equations governing the
motion starting with the accelerations (the accelerations are the easiest to write).

Now look at the motion, which is parabolic in x–y, keeping in mind the properties of parabolas.

Fig.4-3

The ball is on the ground at t = 0 and t = τ, the time of flight. To find these times, set y = 0 and obtain (without
units)

which gives t = 0 and t = 10.6/4.9 = 2.16s, the time of flight.

The range is the value of x at 2.16s:

The maximum height, and vy = 0, occur at 1.08s (one-half the time of flight). Therefore the maximum height is
y at t = 1.08s

The velocity components are:



The procedure for doing the problem is to write the initial velocity in component form, write the six equations
for acceleration, velocity, and position, and then perform the mathematical operations answering questions
about the problem.

4-2 For the situation of problem 4-1 suppose the field is covered with fog down to 3.0m above the ground. What
are the times for the ball's entry into and exit out of the fog?

Solution: The times are found from the equation for y as a function of time with y set equal to 3.0m.

This is a quadratic and removing the units it reads 4.9t2 - 10.6t + 3.0 = 0

and is solved with the quadratic formula.

As an exercise find the x positions for these times.

<><><><><><><><><><><><>

4-3 An airplane traveling at 100m/s drops a bomb from a height of 1500m. Find the time of flight, distance
traveled, and the velocity components as the bomb strikes the ground.

Solution: Start by placing the origin of the coordinate system at the point where the bomb is released. And take
the direction the bomb falls due to gravity as positive x and the horizontal position as y. This is different from
the conventional orientation, but it is convenient in this problem because the six equations all come out
positive!

Fig.4-4

Now write down the six equations governing the motion.



With these six equations we can answer all the questions in the problem. We need only to “translate” the word
questions into algebra questions.

a) The time for the bomb to reach the earth means: Find the time when x = 1500m?

b) How far does the bomb travel horizontally means: Find the value of y when t = 17 s?

c) Find the velocity components at impact means: Find vx and vy at t = 17s?

d) Where is the airplane when the bomb strikes the earth means: What is y and t = 17 s?

Remember that the plane and the bomb have the same velocity in the horizontal direction.

<><><><><><><><><><><><>

4-4 A baseball is hit at a 45° angle and a height of 0.90m. The ball travels a total distance of 120m. What is the
initial velocity of the ball? What is the height of the ball above a 3.0m fence 100m from where the ball is hit?

Solution: This problem is unique in that it requests the initial velocity, a number usually given in the problem.
Also note that the angle is 45°, the angle for maximum range. The other interesting feature of the problem is the
question concerning the height at some specific point down range. Set up the problem in the conventional way
assigning v0 to the initial velocity.

Fig.4–5



The next question is how to handle the ball being hit at 0.90m above the ground. Since v0 is specified at the
point where the ball is hit, and this is where we start counting time, then the origin for the coordinate system
should be put here. We just need to keep in mind that this origin is 0.90m above the ground level.

 

Fig. 4–6

Now write the six equations.

The first question reduces to finding vo for the 120m hit. Algebraically this means that when y = -0.9m, x =
120m, so write the two equations (for x and y) with these conditions

Note that so write

This is the time of flight, so put this time into the equation for x.

The next part of the problem asks for the height above the fence at 100m. Again we need to find the time for x
to be 100m down range and substitute this value of t into the y equation

This is the time for the ball to go 100m. The height of the ball at this time is



Remember that this is 15.6m above the zero of the coordinate system which is 0.90m above the ground. So the
ball is 16.5m above the ground at this point and for a 3.0m high fence is 13.5m above the fence.

<><><><><><><><><><><><>

4–5 A physicist turned motorcycle stunt rider will jump a 20m wide row of cars. The launch ramp is 30° and
9.0m high. The land ramp is also 30° and is 6.0m high. Find the minimum speed for the launch.

Solution:

Fig. 4–7

First write down the six equations of motion.

The minimum v0 is dictated by the condition that the rider be at x = 20m and y = -3.0m. So put these conditions
into the equations for x and y.

At this point we can solve for v0 by substituting  from the first equation into the second equation.

This is the minimum velocity to make the jump.

As a follow on to this problem calculate the velocity to just hit the end of the ramp. This velocity gives an upper
limit to the jump velocity.

<><><><><><><><><><><><>

Go back through the problems and notice the common approach:



1) orient a coordinate system,

2) write the six equations of motion, and

3) translate the word questions into algebra.

In these problems we have not always used each of the six equations to answer the question. Few problems
require the detailed description of the motion available in the six equations. If, however, each problem is
described by these six equations you will always have all the information to answer any possible question about
the motion.



Chapters 5
Forces (including friction)

In the development of mechanics, the first thing to learn is the interrelation of position, velocity, and
acceleration (for constant acceleration). These interrelations are described with the four kinematic equations of
motion and discussed in earlier chapters.

In this chapter we relate constant force to constant acceleration and then to all of kinematics. Operationally,
force can be defined as what makes masses accelerate. Actually it is the unbalanced force on a mass that makes
it accelerate. Simply: Unbalanced forces make masses accelerate.

Force, acceleration, and mass are related by Newton's second law as F = ma.

5-1 A 40-N force is applied to a 20kg block resting on a horizontal frictionless table. Find the acceleration?

Solution: The acceleration is

Fig. 5-1

Once the acceleration is known, the kinematic equations of motion can be applied to find position, velocity, and
acceleration as a function of time.

<><><><><><><><><><><><>

5-2 Now place the 20kg mass (with no external force applied) on a frictionless 50° incline plane. What is the
acceleration of the mass?

Solution: The force acting on the mass is due to gravity so set up a vector diagram (some authors call this a
force diagram or free body diagram) starting with this 196N force acting down. The mass is constrained to
move down the plane, so the force we want is the component of this gravitational force acting down the plane.
In Fig. 5-2 the gravitational force is shown with components down the plane, Fp, and normal, Fn, to the plane.
Notice the geometry of the situation where the 50° angle of the plane is the same as the angle between the
gravitational force and the normal (force).

Fig. 5-2



The 150N force acting down the plane causes the 20kg mass to accelerate at

5-3 Place a 10kg mass on a frictionless 35° incline plane, and attach a second 20kg mass via a cord to hang
vertically as shown in Fig. 5-3. Calculate the acceleration of the system.

Solution:

Fig. 5-3

This problem introduces the concept of the tension in the connecting cord. The most convenient way to
visualize this tension is that if the cord were cut and a force meter inserted it would read a certain tension
(force). This tension acts, as shown, on each mass. Notice the 35° angle of the plane and the 35° angle between
the normal and the direction of mg.

We'll do the problem first with the tension and later without the tension.

To write equations relating the unbalanced force to the acceleration, we need to make an assumption as to
which way the masses move. Assume that the system (of masses) moves to the right or clockwise.

Start by writing equations relating the unbalanced force on each mass. On m1 the unbalanced force is T - 56N,
and this force makes the 10kg accelerate.

Likewise on m2, the unbalanced force to make the mass accelerate is

The assumption that the system accelerates clockwise dictates the directions of the forces in these two
equations. Look again at these equations and notice that if we had assumed the acceleration were
counterclockwise then the signs would be different. In frictionless problems it is all right to have a negative
acceleration. The negative sign means that you guessed wrong in assuming the acceleration direction. This is
not true with friction problems.

Add the two equations and take the accelerations the same. The accelerations are the same because the masses
are linked together with the cord.



Now the tension in the cord is easily calculated from the equation for m1.

Another way to view this problem is to say that the unbalanced force on m1 and m2 is (196-56)N = 140N. This
force makes the total mass of 30kg accelerate, so

This is a very quick way to find the acceleration of the system, but it is inconvenient to find the tension in the
cord.

5-4 The next complication in force problems with incline planes is a double-incline plane as shown in Fig. 5-4.

Fig. 5-4

Solution: The vector diagram for these masses is shown in Fig. 5-5. Assume the system moves clockwise.

Fig. 5-5

The equation for m1 is T - 76N = 12kg.a

The equation for m2 is 83N - T = 20kg.a

Adding the two equations 7.0N = 32kg.a or a = 0.22m/s2

The tension in the cord is T = 76N + 12kg.0.22m/s2 = 79N

<><><><><><><><><><><><>

5-5 Another popular problem is the Atwood machine. A simple example is shown in Fig. 5–6. Find the
acceleration of the system.



Solution: Assume the system moves counterclockwise.

The equation for m1 is 98N–T = 10kg.a

The equation for m2 is T - 147N = 15 kg.a

Add the equations -49N = 25kg.a or a = -2.0m/s2

Fig. 5–6

The system accelerates clockwise! The tension in the cord is from the equation for m1.

Friction

A good first problem in friction is the arrangement shown in Fig. 5–7 where the problem is first done without
friction and then with friction.

For the purposes of doing problems there are two important properties of frictional forces:

· they oppose the motion, and

· they are less than or equal to a constant (the coefficient of friction) times the normal force, the force at
the frictioning surface. (f < µN)

5–6 Two masses are arranged with one, of 50kg, on a frictionless table and the other, of 30kg, attached by a
cord and hanging, over a frictionless pulley, off the edge of the table. Find the acceleration of the system.

Solution: Assume the system moves clockwise.

The equation for m1 is

The equation for m2 is

Adding the two equations



Fig. 5–7

<><><><><><><><><><><><>

5–7 For the situation of problem 5–6 add a coefficient of friction µ = 0.20 between the block and table.

Solution: This makes the vector diagram look like Fig. 5–8. Notice that the only addition is the frictional
retarding force µN = 98N.

Fig. 5–8

The equation for m1 is T - 98N = 50kg.a

The equation for m2 is 294N - T = 30kg.a

Add the equations to obtain 196N = 80kg.a or a = 2.4 m/s2

<><><><><><><><><><><><>

5–8 For the situation of problem 5–7 increase the coefficient of friction to 0.80. What is the acceleration of the
system?

Solution: This makes the vector diagram look like Fig. 5–9.



The equation for m2 is T - 392N = 50 kg.a

The quation for m2 is 294 - T = 30kg.a

Adding the tow equations -98N = 80kg.a or a = -1.2m/s2

Clearly the system does not accelerate counterclockwise! This is an illustration of the second property of
frictional forces: the frictional force is less than or equal to µN. In this case the frictional force just balances the
tension in the cord. The frictional force, as calculated, can be up to 392N. In order for m2 not to move, the
tension in the cord must be 294N. (If m2 is not moving, the forces must be in balance.) Therefore the forces on
m1 must be 294N due to the tension in the cord and 294N due to friction.

Another important point with frictional forces is the normal force as illustrated by this next problem.

<><><><><><><><><><><><>

5–9 A 50kg sled is pulled along a level surface at constant velocity by a constant force of 200N at an angle of
30°. What is the coefficient of friction between the sled and the surface?

Solution: The first step in this problem is to find the components of the applied force and the mg of the sled.
These are shown on the vector diagram. Notice that the normal force, the actual force between the sled and the
friction surface is mg minus the component of the applied force lifting up on the sled. Sometimes it is easy to
miss this vertical component of the applied force. This is the major mistake in this type of problem. To help
visualize this vertical component of force try placing the origin for the vectors in the middle of the sled rather
than at one end where a rope would be attached.

Fig. 5–10

The normal force is mg(=490N) minus the vertical component of the applied force, 100N, or 390N. Since the
sled is moving at constant velocity the forces must be in equilibrium. The horizontal component of the applied
force must equal the frictional retarding force, the coefficient of friction times the normal force.



<><><><><><><><><><><><>

5–10 A 65° -incline plane has a mass of 20kg on the plane where the coefficient of friction is 0.40 and a mass of
50kg hanging free. Calculate the acceleration of the system.

Solution: Set up the vector diagram assuming motion counterclockwise. In the diagram the frictional force is
calculated as a maximum of 33N.

The equation for m2 is 490N - T = 50kg.a

The equation for m1 is T - 178N - 33N = 20 kg.a

Adding the equations 279N = 70kg.a  or  a = 4.0m/s2

Fig. 5–11

In doing friction problems like this, you have to be careful with the frictional force. If the forces up and down
the plane are nearly balanced, it is important to remember that the frictional force is not 33N but that it can be
up to 33N. In a problem similar to this, it could easily happen that the blocks would not move.

<><><><><><><><><><><><>

5–11 Consider a double-incline plane with angles, masses, and coefficients of friction as shown in Fig. 5–12.
Calculate the acceleration of the system.

Fig. 5–12

Solution: Assume the system moves counterclockwise and set up the vector diagram.



The equation for m1 is (30 - 15 - TN = 6.0kg.a

The equation for m2 is (T - 62 - 10)N = 9.0kg.a

Adding the equations -57N = 15kg.a

Fig. 5–13

This is a negative acceleration. We cannot simply reverse the sign of a to find the correct answer since if the
system were moving the other way the frictional forces would have to be reversed. Further analysis requires us
to consider another vector diagram assuming the system moves in a clockwise direction.

The numbers have all been calculated so the vector diagram can be written down easily and is shown in Fig.
5–14

Fig. 5–14

The new equations are: (T - 30 - 15)N = 6.0kg.a

(62 - T - 10)N = 9.0kg.a

Adding the equations yields    7.0N = 15kg.a    or   a = 0.54 m/s2

The tension in the cord is from the first equation: T = 45N + 6.0kg(0.54m/s2) = 48N

If the acceleration of the system were negative for both the clockwise and counterclockwise calculations then
we would conclude that the system would not move.



The final complication in these incline plane problems is the introduction of three masses and two connecting
cords.

<><><><><><><><><><><><>

5–12 Consider a flat surface with a coefficient of friction of 0.20 with a 2.0kg mass and a 3.0kg mass connected
together with a 6.0kg mass along a slant as shown in Fig. 5–15. The coefficient of friction on the slant is zero.
Calculate the acceleration of the system.

Fig. 5–15

Solution: In this problem note that the tensions are different leading to three unknowns, T1, T2, and a. The
solution will require three equations from three vector diagrams as shown in Fig. 5–16. Assume the acceleration
of the system is clockwise.

The frictional retarding force on the 2.0kg block is f = µN = 0.20(19.6N) = 3.92N.

The frictional retarding force on the 3.0kg block is f = µN = 0.20(29.4N) = 5.88N.

Fig. 5–16

The equations for the masses are: T2 = 3.92N = 2.0kg.a

T1 - T2 - 5.88N = 3.0kg.a

24.8N - T1 = 6.0kg.a

The last two equations added together are: 18.9N - T2 =9.0kg.a

and adding this to the first equation yields 15.0N = 11 kg.a    or    a = 1.36 m/s2

The tensions come from the first and third equations for the masses.



Circular Motion

A particle moving at constant speed in a circle is moving in Uniform circular motion. There is an acceleration
and a force associated with such a particle. Figure 5–17 shows the velocity vectors associated with a particle in
uniform circular motion.

Fig. 5–17

While the length of the velocity vector remains the same, the direction changes continually. The diagram on the
left of Fig. 5–17 shows vi and vf, with the tail of the vectors at the same point, and ∆v. Looking at the limiting
case where ∆ θ  0 the ratio

is valid because of similar triangles. With this statement write

which in the limiting situation when ∆θ  0 or ∆ t  0 (same criterion) is

The “rad” subscript is a reminder that the acceleration points radially inward. The direction of arad is also clear
from the limiting situation. As ∆ t  0 the angle between v and ∆ v  90°, so the acceleration is directed
radially inward.

5–13 A certain car driven in a circle can exert a maximum side force of 0.95g. What is the maximum speed for
this car driven in a circle of 160m radius?

Solution: An 0.95g means a side force or acceleration directed at right angles to the direction of travel of
0.95(9.8m/s2) = 9.3m/s2. Using arad = v2/r

At a speed greater than 38.6m/s the car will “slide out of the circle.”



<><><><><><><><><><><><>

The acceleration directed toward the center of the circle for a mass in unifom circular motion is called the
centripetal acceleration. The force associated with moving a mass in a circle is marad and is called the centripetal
force.

5–14 What is the (centripetal) force produced by the tires acting on the pavement for the car of problem 5–13 if
the car is 1200kg of mass?

Solution: 

<><><><><><><><><><><><>

5–15 An 0.60kg rubber stopper is whirled in a horizontal circle of 0.80m radius at a rate of 3.0 revolutions per
second. What is the tension in the string?

Solution: Three revolutions per second means three 2 πr's (circumferences) per second so

The tension in the string, which is providing the centripetal force, is

<><><><><><><><><><><><>

5–16 A 1-oz gold coin is placed on a turntable turning at 33-1/3 RPM (revolutions per minute). What is the
coefficient of friction between the coin and the turntable if the maximum radius, before the coin slips, is 0.14m?

Solution: The frictional force between the coin and turntable provides the center-directed force to keep the coin
on the turntable (see Fig. 5–18). This center-directed force must equal my2 / r.

Fig. 5–18

This is a force-balance problem. In equation form: frictional force = centripetal force, or

The velocity is 2πr times the number of 2 πr's per minute, 100 / 3, or



Therefore,

<><><><><><><><><><><><>

5–17 A conical pendulum is a mass on the end of a cord, where the mass moves at constant speed in a circle
with the cord tracing out a cone. A conical pendulum of length 1.2m moves in a circle of radius 0.20m. What is
the period of the pendulum?

Solution: Note that the mass is not given. Start with a vector diagram of the forces on the mass as shown in Fig.
5–19.

The mg must equal the vertical component of the tension in the string T cosθ = mg.

The horizontal component is due to the centripetal force so T sin θ = mv2/r.

Dividing the second equation by the first eliminates T and m or tan θ = v2/rg.

The angle is from sin θ = r/L making tan θ = 0.17 and

Fig. 5–19

The period is from 2πr/T = v or 

5–18 What is the speed, at which no side force due to friction is required, for a car traveling at a radius of 240m
on a 20° banked road?

Solution: Figure 5–20 shows a profile of the car on the banking and the vector diagram.



Fig. 5–20

Start with mg acting down. The normal force (between the car and road) is normal to the surface with the
vertical component equal to mg and the horizontal component equal to mv2/r.

And again,

so,

Notice that in this problem the mass of the car does not enter into the calculation.

<><><><><><><><><><><><>

Go back over problems 5–13 through 5–18 and notice how each problem could be written asking for a different
variable. For example in problem 5–13 give the side force and the velocity and ask for the radius. In problem
5–16 give the speed and the coefficient of friction and ask for the radius. Changing the problems like this is an
excellent way to generate practice (for the test) problems.



Chapter 6
Apparent Weight

Apparent weight problems usually are encountered in the discussion of force. Though relatively easy, they
cause problems for some people. This short chapter should give you enough background and examples to show
you how to do apparent weight problems.

One of the first points to get straight is the difference between mass and weight. Mass is that property that
makes different objects accelerate differently when equal forces are applied. Operationally mass is the m in the
equation F=ma. Mass is measured in kilograms or slugs. Weight in equation form is

and is the force something exerts. Weight is measured in Newtons or pounds. Popular usage scrambles weight
and mass. Gold and silver are usually sold by the gram or kilogram while nails and chicken feed are sold by the
pound.

The first step in keeping this all straight is to remember that weight is force. A scale that measures weight in
pounds or Newtons is just a force meter. Tension in a rope is a force.

A person of 80kg mass standing on the surface of the earth is subject to the force of gravity that acts between
the 80kg person and the mass of the earth. This force is expressed as an acceleration due to gravity. On the
earth, this acceleration is 9.8m/s2. The force on the person, also called weight is

A force meter placed between the person and the earth would read 784 N.

To understand apparent weight take a “thought trip” (based on experience) on an elevator. Imagine a force
meter between you and the floor of the elevator. As you step on the elevator the force meter reads the same as
when you are standing on the ground. As the elevator accelerates upward, the force meter registers higher,
reading maximum at maximum acceleration. As the acceleration decreases and the elevator assumes a constant
velocity (upward) the force meter reads the same as when the elevator was not moving. This constant velocity
condition is equivalent to forces in equilibrium, so that the only thing contributing to the reading of your force
meter is the mg due to the earth. As the elevator slows, by decelerating, the force meter reads less than the force
for constant velocity. As the elevator comes to rest at a higher level, the force meter again-reads the same as
when you were at ground level.

Let's go back over this elevator ride and put in some numbers. At zero or constant velocity the force meter reads
784 N. If the elevator were accelerating upward at 2.0 m/s2, then the force meter would read

If the elevator were accelerating downward (or decelerating near the top of its trip up) at 3.0m/s2, then the force
meter would read

If the elevator were in free fall, then the force meter would read zero. The acceleration acting on the elevator is
the same as on the person.



6-1 A 12 kg flower pot is hanging by a cord from the roof of an elevator. What is the tension in the cord when
the elevator is stationary and when it is accelerating upward at 3.0m/s2?

Solution: When the elevator is stationary the tension in the cord is

When the elevator is accelerating upward the tension in the cord is increased by an amount equal to ma

Second Solution: Now take another, more analytical, look at the problem. When the elevator is at rest the
tension in the cord equals mg, so writing a force statement, T - mg = ma where a is zero, produces T = mg.
 

Fig. 6-1

When the elevator is accelerating upward at 3.0m/s2 the T - mg = ma equation has an acceleration. The hard
part of doing the problem this way is keeping the algebraic sign of the acceleration correct. Looking at Fig. 6-1,
T and a have the same sign so write

If you use this vector approach to doing apparent weight problems be especially careful of the signs. However
you do the problems, go through a little thought experiment to make sure you have the signs right.

Another difficulty with the vector approach to apparent weight has to do with the interpretation of the vector
diagram (on the right in Fig. 6-1). If you are an observer outside the elevator you observe an acceleration of the
flower pot, as the analysis indicates. If, however, you are riding in the elevator you observe no acceleration of
the flower pot because you are riding in the accelerating reference frame.

<><><><><><><><><><><><>

6-2 A rope (fastened at the top) is hanging over a cliff. What is the tension in the rope with a 70kg mountain
climber sliding down the rope at a constant acceleration of 6.0m/s2.

Solution: Performing a little “thought experiment,” the tension in the rope is less than if he were at zero
velocity or sliding at constant velocity. In this instance the 6.0m/s2 must be subtracted from the 9.8 m/s2.



When in doubt as to whether to add or subtract the acceleration from g, look to the extreme situation. In this
problem the person sliding down the rope at constant velocity would produce (9.8m/ s2)70kg=686N of tension
in the rope. If the person were in “free fall,” that is accelerating at 9.8m/s2. he would produce no tension in the
rope. Thus, any acceleration down the rope should be subtracted from the 9.8m/s2.

6-3 What is the tension in a rope with the 70kg mountain climber of problem 6-3 accelerating (climbing) up the
rope at a constant acceleration of 1.0m/s2.

Solution: In this case the tension in the rope is increased by ma.

6-4 A 100kg astronaut produces a force (weight) on the surface of the earth of 980 N. What force (weight)
would the astronaut produce on the surface of the moon where the “g” is about one-sixth of the g on earth?

Solution: The force or weight would be 

<><><><><><><><><><><><>

6-5 A 16kg monkey wishes to raise a 20kg mass by climbing (accelerating) up a rope that passes over a pulley
attached to the mass. How much must the monkey accelerate up the rope in order to raise the mass?

Fig. 6-2

Solution: The mass produces a force or tension in the rope of

The mass of the monkey hanging on the rope produces a force of

To just balance the mass the monkey must accelerate up the rope to produce a force of (196-157) N = 39 N.

At this acceleration, the tension in the rope is 196N.

To raise the mass, the monkey must accelerate at a rate greater than 2.4 m/s2.



Any acceleration greater than 2.4 m/s2 will increase the tension in the rope by an amount equal to the
“additional” acceleration times the mass of the monkey.



Chapter 7
Work and the Definite Integral.

Work is defined as the force, in the direction of a displacement, times that displacement. Consider the
application of a constant force, F, applied over a distance, x, as depicted in Fig. 7-1.

Fig. 7-1

According to the definition, the work is

which is seen as the shaded rectangular area in Fig. 7-1. In calculus terminology the work is the area under the
curve. The area under this curve is the area of the rectangle, Foxo. The unit of work is the Joule. (J = N.m)

7-1 Calculate the work performed by a constant force of 60N acting in the direction of a displacement of 3.0m.

Solution:

Fig. 7-2

The force is acting in the direction of the displacement, so the work is the product of force times displacement.



In problem 7-1 the force is in the direction of the displacement, and the work is simply the product of force and
displacement. In this next problem the force is not in the direction of the displacement. The simplest way to
obtain the component of the force in the direction of the displacement is to form the dot product of force and
displacement. Using s as a general symbol for displacement, work is defined as the dot product of the force
vector times the displacement vector.

Work is a scalar, the dot product of force and displacement. See the Introduction, Mathematical Background,
for a discussion of the dot product.

7-2 Calculate the work performed by a constant force of 40N pushing a block a distance of 3.0m along a
horizontal surface at an angle of 20° with the horizontal as shown in Fig. 7-3.

Fig. 7-3

Solution: The work performed is calculated with equation 7-2.

<><><><><><><><><><><><>

7-3 Calculate the work done by the force of gravity acting on a 70kg student sliding down a 30° inclined slide a
slant distance of 10m.

Solution: The first thing to calculate is the force due to gravity, mg, which is 70kg.9.8m/ s2 = 686 N. Place this
vector on Fig. 7-4 pointing down.

Fig. 7-4

Calculate the force in the direction of the incline F = 686N cos60° = 343N

The work performed by the gravitational force is W = F.s = 343N.10m = 3430J



<><><><><><><><><><><><>

Now consider variable forces and look first at a force that is proportional to x, the displacement, or F =kx where
k is a constant. This form of force is encountered in springs where one unit of force compresses (or elongates)
the spring a certain distance and the next unit of force doubles the compression, and so on. The graph of force
versus displacement is shown in Fig. 7-5.

Fig. 7-5

The area under any curve of force versus distance can be approximated by taking a sum of forces times
increments of distances over the curve. In this instance take each increment as ∆x and the associated forces as
F1,F2,F3… up to N forces and increments as in Fig. 7-6. In mathematical language this sum of the forces would
be written as

where F represents the N discrete forces measured at intervals of ∆x from 0 to x0. This sum is a collection of
rectangles of height F1, F2,…FN and width ∆x.

Fig. 7-6

Better approximations are obtained by increasing the number of intervals (decreasing the width of each one). In
the limiting case the area would be written as

which is a statement that says as ∆x  0 the rectangles become progressively narrower.

Geometrically this limit of the sum represents the “area under the curve” between x = 0 and x = xo and
physically represents the work performed by this linear force over x. For a linear spring then the work
performed is the shaded triangular area in Fig. 7-5 (1/2 base × height) or



7-4 Calculate the work performed in compressing a spring with a force constant of 200 N/m the first 3.0cm.

Solution: The work performed is calculated with equation 7-5 as

<><><><><><><><><><><><>

7-5 Calculate the work performed in compressing the spring of problem 7-4 the next 3.0cm.

Solution: The general expression for the work performed is kx2 /2. The work to compress the spring from 3.0cm
to 6.0cm is the work to compress it 6.0cm less the work necessary to compress it 3.0cm.

<><><><><><><><><><><><>

This process of taking an infinite number of sums of infinitesimally small increments as described in equation
7-4 and Fig. 7-6 defines an integral.

For the linear or Hooke's law spring where F = kx the integral becomes

which corresponds to the area under the curve of kx in the interval from 0 to xo.

The area is the area of the triangle and is equal to kx2o/2. We will not develop the general technique for
obtaining integrals of power law functions. We will, however, present a justification for the general formula for
power law integrals. Consider the following table.



The first two entries in the table are based on the area of a rectangle and a triangle, easy examples done above.
The third entry, for the quadratic, follows the pattern of the previous two and can be verified by “numerically”
integrating the quadratic, that is, by taking small increments and calculating the associated force and
multiplying to find the area of each little approximating rectangle. See the section on integrals in the
Introduction. Mathematical Background, for more on this technique. This process also can be done for higher
power curves to come to the conclusion shown in the last entry in the table, the one for the general power law
curve.

We come now to another definition of work as the integral of the dot product of force and differential distance.

Most of the situations encountered in the elementary course are for constant or linear forces. The linear force is
encountered in springs. Linear springs are characterized by the constant, k. The k in the equation F = kx has the
units N/m. The work performed in compressing a “kx” spring is kx2 /2. As a final problem consider the work
performed in compressing a “quadratic” spring.

7-6 What is the work performed in compressing a quadratic spring, F = kx2, with k = 2000N/m2, from 0.30m to
0.40m?

Solution: The force is in the direction of the displacement so equation 7–8 reduces to

<><><><><><><><><><><><>



Go back through this chapter and notice the development of the definition of work. The first definition was the
product of the force in the direction of displacement times displacement (equation 7-1). In order to handle
forces not in the direction of the displacement the dot product was introduced (equation7-2). Finally, for
nonconstant forces the integral was introduced giving the last definition (equation 7–8).



Chapter 8
Work-Energy Problems

Work-energy analysis is a very powerful tool for solving problems. Force analysis works well in problems
where there is a constant force or where there is a balance of forces. But when the force acts over a distance,
especially when that force is not constant, then work-energy analysis is the appropriate analytic tool. To handle
the transformation of force over a distance (or work performed) to energy, we first need to define the concepts
of kinetic and potential energy.

Kinetic Energy

A constant force applied to a mass over a distance produces an acceleration according to F = ma. This
acceleration over a distance changes the velocity of the mass in accord with the kinematic equation

. If a in this equation is replaced with F/m then . If the constant
force over a distance is identified as the work then

This simple derivation suggests a more formal look at the work performed on a mass by a force.

The work performed on a mass by a force is defined as the integral of the force times the distance over a

specific distance. Mathematically this is  If the force is replaced by ma and the distance taken in one
dimension, for convenience, then the work integral becomes

The acceleration can be written as a chain derivative (see the Introduction, Mathematical Background).

which makes the integral read

When a force is applied to a mass over a distance and that mass accelerates, then there is a difference in velocity
of the mass between before and after the application of the force. The work performed is manifest in this
velocity and the mv2/2 form is called kinetic energy. Work is transformed into kinetic energy.

Gravitational Potential Energy



Gravitational potential energy comes from the acceleration due to gravity and the accompanying force on a
mass on the surface of the earth. If a mass is raised from a height y1 to a height y2, directly opposite the
acceleration due to gravity,  then the work performed appears as gravitational potential energy.

Fig. 8-1

This mgy term is the gravitational potential. In mechanical systems the total energy of the system is the sum of
the kinetic plus potential energies.

In a mechanical system on the surface of the earth, work performed on the system (mass) can appear as kinetic
or potential energy.

A convenient way of understanding this is to say that work “goes into” kinetic or potential energy. Goes into
may be shortened to the one very descriptive word “Goesinto.” As the problems get more complicated you will
find this “Goesinto” concept more and more useful.

Look first at a block sliding down a frictionless incline plane as shown in Fig. 8-2. The velocity at the bottom of
the plane is related to the height, h, from which the block “fell”.

Fig. 8-2

The kinetic energy at the bottom of the plane is mv2 /2, and this must equal mgh, the potential energy at the top
of the plane. The gravitational potential energy Goesinto kinetic energy.



For the geometric situation shown in Fig. 8-2, h is 3.4m so

If the block were to continue to slide horizontally along a frictionless surface it would maintain this 8.2m/s
velocity.

Frictional Forces

Frictional forces are proportional to the normal force (the force between the two surfaces) and a constant
characteristic of the interface (the surfaces involved). They also act to oppose the motion. Frictional forces
acting over a distance result in energy lost due to friction. In the example shown in Fig. 8-2, a coefficient of
friction between the block and a flat surface at the bottom of the plane would result in energy lost to friction and
the block eventually coming to rest. In this problem, potential energy at the top of the incline plane Goesinto
kinetic energy at the bottom of the plane, and this energy Goesinto work to overcome friction.

Give the flat surface (Fig. 8-2) a coefficient of 0.20 and the frictional retarding force is

To find the distance the block slides, we can go back to the kinetic energy at the bottom of the plane or the
potential energy at the top of the plane. Since there are no losses these numbers must be the same. Take the
potential energy at the top of the plane because it is easier to calculate and is original data in the problem. This
energy must equal the work due to friction fL or

8-1 Place a 3.0kg block at the top of a 3.4m high frictionless incline. At the bottom of the incline the block
encounters a spring with a constant of 400 N/m on a horizontal surface. No energy is lost to friction. How far is
the spring compressed?

Solution: The energy at the top of the plane, which is the same as the energy at the bottom of the plane,
Goesinto compressing the spring. The energy at the top of the plane is, from the example problem, 100J
so



Fig. 8-3

<><><><><><><><><><><><>

8-2 Now complicate problem 8-1 by adding a coefficient of friction of 0.20 for the horizontal surface. How far
does the block slide while compressing the spring?

Solution: Now the potential energy Goesinto compressing the spring and overcoming friction. This statement
is very helpful in writing the equation. In words, the potential energy, mgh, equals the energy to compress the
spring, kx2 /2 plus the work to overcome friction, µmgx, or

or

Eliminating the units, which are correct, the equation becomes

with solutions

The negative root is inappropriate for this problem. The block compresses the spring 0.70m while sliding on
this frictional surface.

<><><><><><><><><><><><>

It is instructive to do a problem first with force analysis and then with work-energy analysis. Consider the case
of a block sliding down an incline plane with a coefficient of friction. As will become evident, it is possible to
do this problem with force analysis techniques. Work-energy analysis is, however, conceptually and
computationally easier. The force analysis follows the procedures in the chapter on forces.

8-3 Consider the incline plane with friction shown in Fig. 8-4 and calculate the velocity of the block at the
bottom of the plane using force analysis, then work-energy analysis.

Solution: The vector diagram is also shown in Fig. 8-4. The unbalanced force of 20 N acts on the 5.0kg block
causing it to accelerate at 4.0m/ s2 down the plane.

The slant height of the plane is 6.0m / sin 35° = 10.5m.



Fig. 8-4

This acceleration over the 10.5 m results in a velocity

Second Solution: Now do the same problem using work-energy analysis. When the block is at the top of the
plane, the energy is

At the bottom of the plane all of this (potential) energy has gone into kinetic energy (velocity of the block)
except for the amount used to do work against the frictional force. The work (against the frictional force) is

The energy “left” after the block has slid down the plane is the 294 J at the top of the plane minus the 84 J lost
due to friction, and this energy (= 210J) is manifest in the velocity of the block (kinetic energy). This “energy”
is equal to the mv2/2, the kinetic energy of the block at the bottom of the plane.

<><><><><><><><><><><><>

8-4 A 5.0kg block sliding at 12 m/s along a frictionless surface encounters a spring of force constant of 500
N/m resting on a surface with coefficient of friction 0.25. The friction surface is only under the spring. What is
the maximum compression of the spring?

Solution: Before looking at Fig. 8-5 try drawing the diagram yourself. On exams you sometimes have to work a
problem from only a word description. As you are working through these problems practice drawing the
diagrams, and do not be hesitant in using several diagrams. Notice the previous problem where the system was
depicted with the vector diagram beside it. Sketching the system and all the vectors on a single diagram is
unnecessary confusion. Use multiple diagrams and reduce the clutter.



Fig. 8-5

When the block encounters the spring and the friction surface all the energy is kinetic, mv2 /2. This energy
Goesinto compressing the spring and sliding along the friction surface. In equation form

Be careful in writing this statement. Many people write the kinetic energy correctly, the energy to compress the
spring correctly, and then write the force to slide along the friction surface. Be aware of this mistake and check
the units to be sure the units on one side of the equation are the same as the units on the other side of the
equation. You may have noticed that in all problems the first equation is written with units just as a reminder
that checking units will reduce the number of errors. It is very frustrating to make a simple mistake that could
have been avoided had units been checked in the problem before proceeding with the numerical calculations.

Putting in numbers

The units are correct so without units the equation is

and

This is the amount the spring is compressed as the block comes to a stop.

<><><><><><><><><><><><>

8-5 For the situation described in problem 8-4, find the velocity with which the block leaves the spring.

Solution: Start this problem with the spring compressed the 0.91m. At this point the potential energy stored in
the spring is used to push the block 0.91m back across the friction surface. The energy remaining as the block
leaves the spring is the original kinetic energy less the energy expended in two 0.91m trips across this friction
surface. In word-equation form this is



This is a Goesinto problem. Initial KE Goesinto two trips across the friction surface plus the final KE.

The total work performed in the block moving across this surface is

The velocity of the block as it flies off the spring is

8-6 Go back to an incline plane problem (similar to problem 8-3) but with the addition of a spring with a force
constant of 300 N/m placed at the bottom of the incline, as shown in Fig. 8-6. Calculate the compression of the
spring when the block slides down the plane.

Solution: An approximate answer can be obtained by setting mgh, where h is the vertical distance from the
block to the spring, equal to kx2 /2, the compression of the spring.

Fig. 8-6

The compression of the spring gives the block a little more potential energy so a more correct statement would
take into account this “additional height,” h.

Eliminating the units and cleaning up the numbers yields a quadratic

with solution



This value is somewhat larger than calculated above as expected, due to the “additional height.”

The procedure of finding an approximate solution and then refining it to the exact solution is very helpful in
attacking problems. First you get an approximate solution that is close to the exact one, and second you educate
yourself as to how to proceed to the exact solution. This procedure is used in the last problem in this chapter.

8-7 Place a mass on a track made up of a flat section, L, with coefficient of friction, µ, and two frictionless
semicircular surfaces of radius R. Let the mass start from the top of one of the semicircles and calculate where it
comes to rest.

Solution:

Fig. 8-7

The initial potential energy is mgR. When the mass encounters the friction surface, this (potential) energy is
dissipated in doing work to overcome friction. Assuming the energy lost due to friction in one traverse is less
than the initial potential energy, the mass will rise to a height (on the opposite semicircle) R' dictated by the
energy statement

After another traverse of the flat portion of the track the height will be dictated by

and so on until all the original potential energy is dissipated.

<><><><><><><><><><><><>

8-8 For the track shown in problem 8-7 take µ = 0.10, R = 1.0m, and L = 2.0m and find where the mass stops.

Solution: The only way the mass loses energy is by sliding along the flat “friction” part of the track. The initial
potential energy Goesinto frictional work.

The mass crosses the friction area 5 times and ends up at the edge of the friction surface opposite from where it
started.



<><><><><><><><><><><><>

8–9 Consider a 10gm bullet passing through a 3.0kg block resting on a table. The velocity of the bullet is 400
m/s on entering the block and 250 m/s on exit. Calculate the energy lost by the bullet in passing through the
block.

Solution: The energy is all kinetic, so calculating before and after

The kinetic energy lost or ∆KE = 488J.

<><><><><><><><><><><><>

8–10 If 30% of the energy lost in problem 8–9 is available to move the block along a surface with coefficient of
friction 0.80, how far will it move?

Solution: Equate the energy available to the work performed

8–11 Consider an elevator weighing 4000N held 5.0m above a spring with a force constant of 8000 N/m. The
elevator falls onto the spring while subject to a frictional retarding force (brake) of 1000 N. Describe the motion
of the elevator.

Solution:

Fig. 8-8

The potential energy of the elevator with respect to the top of the spring is



When the elevator falls, this energy, less the energy lost due to the frictional brake, is available to compress the
spring.

The friction brake stays on while the elevator is in contact with the spring so this energy Goesinto kx2 / 2 + fx.
In equation form this is

This expression is only approximately correct since if the spring is compressed a distance x, then this mgx
provides an additional amount of potential energy. The correct equation that determines the compression of the
spring is

Putting numbers into the equation

The units are correct so 4000x2 - 3000x - 15000 = 0 or 4x2 - 3x - 15 = 0 which has solution

The energy stored in the spring at this (compressed) point is

This amount of energy will raise the elevator and do work against friction according to the equation

This places the elevator 2.1m above the spring.

This analysis can be repeated until the elevator comes to a stop. As an exercise perform one more “bounce” of
the elevator starting at 2.1m above the spring.

The elevator will continue to bounce up and down off the spring until the weight of the elevator is equal to the
force of the spring plus the frictional force



so the elevator comes to rest with the spring compressed 0.38m.



Chapter 9
Momentum Analysis

A discussion of the application of the law of conservation of momentum starts with a consideration of the center
of mass of a collection of particles. For discrete mass points the center of mass is defined as

and likewise for y and z if the masses are distributed in two or three dimensions. A more powerful vector
notation is

9-1 Calculate the center of mass for a distribution of mass points as shown in Fig. 9-1.

Solution:

Fig. 9-1

The rcm form indicates that the calculation is to be done in vector notation, so (The units are often left our of
calculations involving unit vectors and added at the end.)



These mass points act as if all of their mass (50kg) were at the point (0.72,0.24). If these three masses were
placed on a plate of negligible mass, the balance point would be at (0.72,0.24).

The law of conservation of momentum can be viewed as a consequence of the statement: The total mass of a
collection of particles times the acceleration of the center of mass equals the applied, or external, force, that is,
the sum of the forces on all the individual component masses. This is of course a vector equation.

9-2 For the same collection of masses at the same points, as in problem 9-1, add forces as shown in Fig. 9-2 to
each mass and find the resultant acceleration of the center of mass.

Fig. 9-2

Solution: Remember: the acceleration of the center of mass is the total mass times the vector sum of all these
forces. Applying equation 9-3

so



If the previous statement Fext = macm is viewed as  then if Fext = 0, mvcm must be a constant. (The
derivative of a constant is zero; or viewed graphically, if the curve of mv versus time is a constant then the slope
is zero.)

Stated another way: For a system with no external forces the sum of the momentum vectors m1v1+m2v2+
…,which add to mvcm, must all add to zero.

<><><><><><><><><><><><>

9-3 A 5.0g pellet is compressed against a spring in a gun of mass 300g. The spring is released and the gun
allowed to recoil with no friction as the pellet leaves the gun. If the speed of the recoiling gun is 8.0m/s, what is
the speed of the pellet?

Solution: This problem is solved by application of the law of conservation of momentum. This law can be
applied because there is a no external force. Since there is no external force, all the mv's must add to zero.

Fig. 9-3

The conservation of momentum statement on the left is based on the simple observation “bullet go one way,
gun go the other,” while the formal statement that the mv's add to zero is on the right. With a well-labeled
diagram of the situation, the statement on the left is probably easier to visualize, that is, the momenta are equal
and opposite. Putting in the numbers

As a check, not that the momentum of the gun pg = mgvg = 2.4kg.m/s and the momentum of the pellet pp = mpvp =
2.4kg.m/s are numerically equal and since they are in opposite directions add to zero.

The energy of each is mv2/2 or p2/2m. So for the gun

Performing the same calculation for the pellet



The total energy stored in the spring is the sum of these energies or 298J.

<><><><><><><><><><><><>

9-4 Make the pellet gun of problem 9-3 fully automatic and capable of firing 10 pellets per second. Calculate
the force these pellets make on a target where the pellets do not bounce.

solution: This problem is solved by calculating the average momentum transferred to the target per unit of time.
The momentum of each pellet is 2.4kg.m/s. The force on the target is calculated from the simple expression

The total momentum transferred each second is 10 individual momenta of each pellet.

<><><><><><><><><><><><>

9-5 A 75kg hockey player traveling at 12m/s collides with a 90kg player traveling, at right angles to the first, at
15m/s . The players stick together. Find their resultant velocity and direction. Assume the ice surface to be
frictionless.

Solution: This problem can be analyzed by conservation of momentum. Calculate the momenta and draw a
vector diagram.

Fig. 9-4

The angle of the two hockey players is from  or θ=56°,

and the resulting momentum is 



The players move off with velocity  at an angle of 56° to the original direction of the 75kg
player.

Second Solution: A more formal approach is to write a conservation of momentum statement equating the total
(vector) momentum before the collision to the total (vector) momentum after the collision. Take the plus i
direction as the initial direction of the first player and the plus j direction as the original direction of the second
player. Using the numbers already calculated

As an exercise verify the final velocity of 9.83m/s at the 56° angle.

<><><><><><><><><><><><>

9-6 James Bond is skiing along being pursued by Goldfinger, also on skis. Assume no friction. Mr. Bond, at
100kg, fires backward a 40g bullet at 800m/s. Goldfinger, at 120kg, fires forward at Bond with a similar
weapon. What is the relative velocity change after the exchange of 6 shots each? No bullets hit Bond or
Goldfinger.

Solution: The problem is analyzed with conservation of momentum. The mbvb of the bullet fired by Bond
increases his momentum by mBδvB. Remember that each bullet Bond fires increase his velocity. Set mbvb = mBδvB

and solve for δvB

The 40 × 10-3kg bullet is small compared to the 100kg of Bond, and it would not affect the calculation. The δvB

notation is used to indicate that each bullet fired by Bond causes a change in his velocity.

Goldfinger, on the other hand, has his momentum decreased. In his case, mbvb = mGδvG.

Putting in the numbers

Bond goes faster and Goldfinger goes slower with the total change in velocity 0.58m/s for each pair of shots
fired. For six shots this amounts to a difference of 3.48m/s. If Bond and Goldfinger had been traveling at the
same speeds, then after this exchange Bond would have a relative speed advantage of 3.48m/s.

<><><><><><><><><><><><>

9-7 A 3000kg closed boxcar traveling at 3.0m/s is overtaken by a 1000kg open boxcar traveling at 5.0m/s. The
cars couple together. Find the resultant speed of the combination.

Solution: The momentum before coupling is the same as the momentum after coupling (no external forces).



<><><><><><><><><><><><>

9-8 Continuing problem 9-7, rain falls into the open boxcar so that the mass increases at 1.0kg/s. What is the
velocity of the boxcars at 500s?

Solution: The total momentum of the boxcars is 4000kg(3.5m/s=14000kg.m/s. Assume there is no horizontal
component of the rain to change the momentum in the direction of motion of the boxcars. The mass increases
by (1.10kg/s)3.5m/s=500kg. The momentum is a constant, so the new velocity is

<><><><><><><><><><><><>

9-9 For the situation described in problems 9-7 and 9-8, what is the rate of change in velocity for the boxcars?

Solution: This is a very interesting calculus problem that involves taking the total derivative. Since there are no
external forces, the total change in mv must equal zero so

Now write m as a function of timem = mo + rt=4000kg + (1.0kg/s)t.

The derivative of m is dm = rdt.

Using the previous two equations and rearranging 

Introduce a change of variable 

Integrating, 1n v=-1nu + 1n K. Use 1n K because it is a convenient form for the constant.

Now rearrange: 1nv + 1nu=1nK and 1nuv=1n K or uv=K

change the variable back to t so (mo + rt) v =K.

Evaluate the constant from the condition that at



The relation between 

The velocity at 

Conservation of momentum and a little calculus produce the v versus t relation.

<><><><><><><><><><><><>

9-10 A 3.0kg cat is in a 24kg boat. The cat is 10m from the shore. The cat walks 3.0m toward the shore. How
far is the cat from the shore? Assume no friction between boat and water.

Solution: There are no external forces so the center of mass of the cat-boat system is constant. Knowing that the
center of mass doesn't move is all that is necessary to do this problem.

Fig. 9-5

Referring to Fig. 9-5, write the center of mass of the cat-boat system before the cat walks. (M is the mass of the
boat and m the cat.) Then write the center of mass of the cat-boat system after the cat walks.

Because there are no external forces the centers of mass are the same so

Watch the algebra and solve for xc. Use a word statement before writing the algebra statement. “The final
distance of the cat from the shore is equal to the original distance of the cat from the shore plus the
displacement of the cat relative to the boat and the displacement of the boat relative to the shore.”  Read the
sentence, look at the diagram, and write



Now substitute from M(xb-xb=m(xc-xc) or xb-xb =(m/M)(xc-xc),

<><><><><><><><><><><><>

9-11 Rabbit food in the form of pellets is poured onto a scale pan at the rate of 400 pellets per second. Each
pellet has a mass of 20g and falls a distance of 2.0m. Assuming the pellets do not bounce, calculate the scale
reading at 7.0s.

Solution: There are two components of the force. Momentum is transferred to the scale pan giving a constant
force. The pellets are accumulating in the scale pan giving a time dependent part of the force.

First calculate the velocity of the pellets as they hit the scale pan.

The momentum for each pellet is mv=0.020kg(6.26m/s)=0.125kg.m/s

The total force due to this momentum transfer is 400 mv's per second

The force due to accumulation is the weight of each pellet times the number per second (µ), times the number of
seconds.

The scale reading at 7.0s is the sum of these two components or 599N.



Chapter 10
Collision and Impulse

Momentum provides a new analysis technique. With force analysis and work-energy analysis, application of the
appropriate analysis technique to “the problems at the end of the chapter” was reasonably straight forward. At
the end of the chapter on forces use force analysis. At the end of the chapter on work-energy use work-energy
analysis. However, at the end of the chapter on momentum we need to use momentum and work-energy
analysis. Knowing when to use work-energy analysis and when to sue momentum analysis adds a whole new
dimension to problem solving.

As will become evident in this chapter, there are certain types of collision problems where conservation of
momentum and conservation of energy can be applied and certain problems where only conservation of
momentum can be applied. This is no where better illustrated than in the ballistic pendulum problem (presented
later), where conservation of momentum is applied in one part of the problem and conservation of energy in
another part of the problem. Learning where to apply these two conservation laws is difficult. As the problems
in this chapter are presented, be aware of which law is being applied and why.

Before doing problems take a general look at collisions in one dimension. Throughout the discussion A and B
will designate the two particles, and 1 and 2 will designate before and after the collision.

There are two types of collisions:

In elastic collisions both momentum and energy are conserved. Examples of elastic collisions are billiard balls
or any collision where the participants bounce.

In inelastic collisions only momentum is conserved. Examples of inelastic collisions are railroad cars coupling
or a steel ball thrown into a piece of clay or any collision where the participants stick together.

It is this sticking or nonsticking that determines if energy is conserved or not. When we say that energy is not
conserved in a collision where the participants stick together, we mean only that mechanical energy, (1/2)mv2,
is not conserved.

Inelastic Collisions.

Consider first inelastic collisions. Where the particles stick together. Using the notation described above

Fig. 10-1

This equation states that after the collision, the velocity of the A particle is the same as the velocity of the B
particle. Applying in the law of conservation of momentum and this condition

The left side of the equation is the momentum before collision, and the right side is the momentum of the two
masses stuck together traveling at the same velocity after the collision.



Fig. 10-2

Take the special case where the B particle is initially stationary. While mechanical energy is not conserved in
the collision the kinetic energies can be written as

 and 

K2 can be rewritten using the conservation of momentum statement

Comparing these two equations gives a relationship for the energy before and after collision.

10-1 A ballistic pendulum, a device for measuring the speed of a bullet, consists of a block of wood suspended
by cord. When the bullet is fired into the block, the block is free to rise. How high does a 5.0kg block rise when
a 12g bullet traveling at 350m/s is fired into it?

Fig. 10-3

Solution: This is a most interesting and instructive problem. The collision between the bullet and the block is
clearly inelastic (the bullet comes to rest in the block). Part of the kinetic energy of the bullet Goesinto friction
as the bullet burrows its way into the block. Therefore mechanical energy is not conserved.

Because the collision is inelastic, apply conservation of momentum of the collision. Before the collision, all the
momentum is in the mv of the bullet. After the collision, the momentum is in the (m+M)V of the block and
bullet. We assume that the bullet comes to rest (transfer all its momentum) before there is appreciable motion of
the bullet-block combination.



After the collision, the rise of the block is determined by energy analysis. The kinetic energy of the block
Goesinto potential energy.

 or 

Substituting for V from mv = (m+M)V

 so  or 

giving the relation between the velocity of the bullet and the height the block and bullet rise. For this problem

In this problem the 0.012 can be neglected in comparison to 5.0. This is not always the case so we write m + M
as 5.012 as a reminder to include both m +M in the calculation.

<><><><><><><><><><><><>

10-2 A 6.0g bullet is fired horizontally into a 2.8kg block resting on a horizontal surface with coefficient of
friction 0.30. The bullet comes to rest in the block, and the block slides 0.65m before coming to a stop. What is
the velocity of the bullet?

Solution:

Fig. 10-4

Assume the bullet comes to rest in the block before the block moves appreciably and that all the momentum in
the bullet is transferred to the bullet-block combination.

Once the bullet-block combination is moving at V, the kinetic energy, (1/2)(m+M)V2, Goesinto work to
overcome friction µ(m + M)gx

Substituting

or



Elastic Collisions

Now look at elastic collisions, where the particles bounce. In elastic collisions no energy is lost to permanent
deformation of the particles. Write a conservation of momentum statement for the collision diagrammed in Fig.
10-5.

Fig. 10-5

Now write a conservation of energy statement.

These two statements can be written as

 and 

Now divide the (rewritten) conservation of energy statement by the conservation of momentum statement to
find

 or 

The term vA1 – vB1 is the speed of approach, the speed of A relative to B measured by an observer on B. The term
vA2 – vA2 is the speed of departure. So in an elastic collision the speed of approach is equal to the speed of
departure.

Now find expressions for the velocities after the collision in terms of the masses and the velocities before the
collision. From the velocity statement (above)

From the conservation of momentum statement (above), substitute the equation for vB2.

and with a little algebra



With these two statements vA2 and then vB2 can be predicated from the initial masses and velocities.

Look at some special cases:

If mA = mB, the masses are equal then vA2 = vB1 and vB2 = vA1

The particles exchange velocities. This is what happens in billiards!

If vB1 = 0, the struck mass is at rest, then

For some realistic cases where the masses are equal or one particle is at rest the resulting expressions for the
velocities are easily calculated.

10-3 A 1.5kg block traveling at 6.0m/s strikes a 2.5kg block at rest. After an elastic collision, what are the
velocities of the blocks?

Solution: This is the special case where the struck block is at rest so

the striking block rebounds at (-) 1.5m/s, and the struck block moves off at 4.5m/s.

<><><><><><><><><><><><>

10-4 A 1.0kg steel ball is attached to a light-weight 1.0m long rod pivoted at the other end. The ball is released
at the horizontal and strikes a 3.0kg steel block resting on a surface with coefficient of friction 0.25. How far
does the block travel?

Solution: This problem is similar to the ballistic pendulum problem in that conservation of energy and
conservation of momentum and then work-energy have to be applied correctly. From the description of the
collision assume that it is elastic.

Fig.10-6

First calculate the velocity of the ball as it hits the block. Potential energy Goesinto kinetic energy.



The collision is elastic and vB1 = 0, so

The gives the initial velocity of the struck block. The kinetic energy Goesinto work against friction.

Go back over this problem and see where energy analysis is applied, conservation of momentum is applied, and
work-energy analysis applied. Knowing what laws to apply where in the problems is the hard part of collision
problems.

Impulse

Impulse is the name given to a force that acts for a very short period of time. A struck baseball, golf ball, or
tennis ball are examples of impulses or impulse forces. In most impulses, it is impossible to graph force versus
time; though we can often estimate how the force varies with time.

Force is defined terms of change in momentum as 

If the force is time dependent, F(t), then rewriting, ∆(mv) = F (t)∆t

With calculus notation this statement would be written as 

The left side is the change in momentum, and the right side is the area under the F(t) versus t curve. This
integral is called the impulse or impulse integral. If the curve of F(t) versus t were a parabola (reasonable for
an impulse), then the right side of the equation would be the area under the curve in Fig. 10-7.

Fig. 10-7

10–5 A 1.2kg croquet ball moving at 2.0m/s struck from behind by the impulse force shown in Fig. 10-8. What
is the final velocity of the croquet ball?

Solution: The initial momentum is 



Fig. 10-8

The impulse integral, the difference in momentum, can be calculated by inspection. The area under the curve
(one-half the base times the height) is

The final momentum then is 

and the final is 



Chapter 11
Rotational Motion

The study of rotational motion begins with the kinematics of the motion, that is, the relation between angle,  θ,
angular velocity, ω, and angular acceleration, α. Start with a point rotating about the origin of a coordinate
system, usually an x - y system, with r - θ superimposed.

Begin with the definition of radian measure as angle equals arc length over radius. This gives the angle as a
pure number, or radians. Radian is a phantom unit, sometimes it is used and sometimes not. For example, for an
arc length of 4m on a circle of radius 2m the angle in radians is 4 m / 2 m=2. This is usually written as 2 rad. In
a problem involving canceling units this can add confusion because rad is length over length or unity and does
not cancel with anything. So rad may appear in a problem, then disappear in the answer, or vice versa, thus
fitting the description “phantom.” When radian is used in a problem, the unit is for clarity and will not
necessarily be in the final answer.

Fig. 11-1

The kinematic angular equations can be written as direct analogs to the linear ones.

Another set of relationships in rotational motion is the one between linear motion and angular motion. These
relate the motion of a particle, or point, along a circular path to the angular motion. Position along the circular
path is called the linear position or rim position. These relationships come out of the definition of radian
measure, θ=s / r or s=rθ. For constant r, a small change in s is related to a small change in θ by ∆s=r∆θ; and if
the change is over time, then ∆s/∆t=r(∆θ/∆t) or v=rω, relating the linear velocity, the velocity of a point on the
rim, to the angular velocity. For a small change in linear velocity ∆v=r∆ω; and if this occurs over time
∆v/∆t=r(∆ω/∆t) or a=rα, relating the linear acceleration, the acceleration of a point on the rim, to the angular
acceleration. Formal definitions of angular velocity and angular acceleration are in the next chapter.

There is one more relationship in angular motion. If a point is rotating on a circle with constant angular velocity
ω, the linear velocity is numerically constant. But velocity is a vector; and while the number associated with the
linear velocity is not changing, the direction is changing. Refer to Fig. 11-2.



Fig. 11-2

The vectors v and v' are separated by an angle θ. The acceleration is the difference between the vectors.
Remember, the vectors v and v' are at right angles to the radius, so the angle between v and v' is the same as the
angle between the r's. Drawing the figure for the r's and another figure for the v's, with the v's placed tail to tail,
we have similar triangles (isosceles triangles with the same angles). For small angles, ∆s approaches a straight
line so comparing the similar triangles write

 and form this relation write 

In the limit ∆s / ∆t is v and ∆v / ∆t is a, so the acceleration is

The acceleration vector points inward along r. Refer to Fig. 11-2 and note that in the limit as ∆t 0, ∆s 0,
and ∆v 0, ∆v and a point toward the center of the circle. These are all the relations necessary to do problems
in rotational motion.

Use this sample problem to become familiar with manipulating revolutions, revolutions per minute, and radians.
A wheel is rotating on its axis at 100 revolutions per minute. This is usually written as 100 rev / min. The angle
turned through in each minute is 100 times 2π (radians). This little calculation is often missed in rotation
problems. Each revolution represents an angle of 2ω measured in radians.

The angular speed is θ=2π.100rad/min,

Converting to seconds  ω=(2π.100rad/min)(1 min/60s)=(10π/3)(rad/s).

Assume the wheel slows, under constant acceleration, to zero in 3.0 minutes.

Calculate the acceleration as

Angular velocity is usually written with the units (rad/s) or (1/s) and angular acceleration as (rad/s2) or (1/s2),
which is why radian is called a phantom unit. Radians and revolutions are usually introduced as units for
convenience in understanding a problem and not as units to be carried and manipulated, as is the case with kg,
m, s, etc. Be very careful on this point. It can cause you trouble!

The angle turned through is the average angular velocity times the time.



or

<><><><><><><><><><><><>

11-1 An automobile is traveling at 60km/hr. Calculate the angular velocity of the 0.35m radius wheels.

Solution: The linear velocity of the (contact) point on the wheel is 

The linear velocity of the contact point on the wheel is the same as the velocity of the axle.

The angular velocity is 

Adding radians in the units makes the meaning clearer.

<><><><><><><><><><><><>

11-2 If the automobile of problem 11-1 accelerates uniformly from 60km/hr to 80km/hr in 3.0s, what is the
angular acceleration?

Solution: This acceleration is the acceleration of the point where the wheel meets the road. First calculate the
change in velocity.

This is the change in velocity of the point on the wheel. The linear acceleration, is

The angular acceleration is



<><><><><><><><><><><><>

11-3 A disk rotating at 30rad/s slows to 20rad/s while turning through 60 revolutions. How long does this take?

Solution: Since the acceleration is constant we can use 

<><><><><><><><><><><><>

11-4 For the acceleration of the disk in problem 11-3, how many revolutions does it take for the disk to stop?

Solution: First, calculate 

Now use ω2=ω02+2αθ with ω=0 and ω0=30 rad/s to find θ:

Applications

From kinematics we can go to some more complicated rotational problems.

11-5 Consider a space station in the form of a donut with a rectangular cross section connected by spokes to a
central axis. The “floor” is the inside of the outer wall. How fast would a 300 m radius station have to rotate to
duplicate the “acceleration due to gravity” on the surface of the earth?

Fig. 11-3

Solution: The required acceleration is the v2/r acceleration associated with rotational motion. Since v is related
to ω by v=rω, then the required acceleration a=v2/r=rω2. Set this acceleration equal to 9.8m / s2 and solve for
ω.



The frequency in revolutions per minute is

Notice that in this last calculation “rev” was introduced for clarity.

<><><><><><><><><><><><>

11-6 If someone of weight 800N (on earth) living in the space station described in problem 11-5 were to move
one-half the radius in toward the axis of rotation, what would be their weight at this radius?

Solution: Their weight, what a force meter placed between them and a “floor” would read, in this environment
would be

If the person in the space station were placed in a “black box” where they were unaware of their surroundings,
there is no experiment they could perform to determine whether their weight were produced by the mv2 / r of
the space station or mg of the earth or any other planet.

Consider astronauts in earth orbit. From the reference frame of the astronauts the mv2 / r force is balanced by
the gravitational force of the earth. This lack of force, or weightlessness, has a dramatic effect on the bodies of
earth orbiters who typically “grow” 2 to 3cm in earth orbit.

Many physics textbooks treat all problems involving centripetal force from an external reference point. This
may sometimes be confusing. Keep this clear in your mind; from the reference point of the external observer
there is no “centrifugal” force, or force that acts radially out. However, in many instances the most practical
way of solving uniform circular motion problems is from the point of view of the object being rotated.
Operationally this means to treat them as force balance problems in which mv2/r acts radially out. Look back to
problem 5–16 where the coin is rotating on the turntable. If you were riding on the coin at constant angular
velocity you would say there is no unbalanced force in the radial direction; the mv2/r force acting out is
balanced by the µN force acting in.

<><><><><><><><><><><><>

11-7 Consider a mass of 2.0kg being whirled in a sling in a horizontal circle. The period of rotation is 1.0s, and
the radius 1.0m. What is the tension in the cord?



Solution: The force that makes the mass travel in a circle must be equal to mv2/r. The velocity of the mass is
the distance traveled (one circumference) divided by the time to travel one circumference (the period)

The force (or tension) in the cord is 

Be aware of how tension in the cord is interpreted. If you are whirling the cord, the tension, from your point of
view, is radially out. From the point of view of the mass in the sling, however, the tension is pointing in. This is
similar to force problems with blocks where the tension in the connecting string acts one way on one block and
the other way on another block. See for example problem 5–7 in Chapter 5, Force.

In linear motion, something moving at constant velocity is not acted on by an unbalanced force. In circular
motion, something moving in uniform circular motion is subject to a force; the mv2/r force to produce the
acceleration necessary to make it move in a circle.

To help keep this straight in your mind take a “thought trip” in an airplane flying in a vertical bank (wings
vertical) in a horizontal circle. A force meter between you and the seat of the airplane would read a number
equal to your m times v2/r. The force acting on you is toward the center of the circle, but you exert an equal (in
magnitude) force on the seat that is radially out of the circle. In some airplanes the force can be so great as to
cause the blood in the pilot to remain in the lower part of his body resulting in loss of oxygen (carried by the
blood) to the brain and “blackout.”

Make a slight variation in this “thought trip” by having the airplane move in a vertical circle. Now the force
meter between you and the seat reads mg more or less than mv2/r depending on whether you are on the top or
the bottom of the loop.

<><><><><><><><><><><><>

11-8 Take the same mass, radius, and period as in problem 11-7 but with the rotation in a vertical circle. What is
the force between the mass and the sling?

Solution: In this case gravity has to be taken into account. The mass exerts a force on the sling radially out and
equal to mv2/r. Gravity exerts a force mg down. Figure 11-4 shows the relative direction of these forces at four
points on the circle.

The gravitational force is mg=(2.0kg)9.8m/s2=19.6N

The force between the mass and the sling as shown in Fig. 11-4 is 79.0+19.6=98.6N at the bottom of the circle
and 79.0-19.6=59.4N at the top of the circle.



Fig. 11-4

<><><><><><><><><><><><>

11-9 For the situation in problem 11-8 calculate the minimum velocity and period of rotation to keep the mass
from “falling out” at the top of the circle.

Solution: Zero tension in the cord occurs (at the top) when

Notice that the mass drops out of the equation. Using the 1.0m radius

The period is calculated by replacing the velocity by 2πr / T

This result can be checked by whirling a mass in a vertical circle and observing that the mass “falls out” of the
circle at a period of over 2.0s. (The length from shoulder to ground is a little over 1.0m for most people so this
is an easy experiment to perform. For a little adventure try it with a container of liquid!)

11-10 A glider pilot wishing to fly in a vertical loop dives to attain a speed sufficient to keep the glider from
“falling out” of the top of the loop. What is the minimum entry speed for a 200m radius loop?

Solution: This problem is solved with energy analysis. At the bottom of the loop the glider must have sufficient
kinetic energy to climb the diameter of the loop and have enough left to satisfy the mv2 / r = mg condition.
Refer to Fig. 11-5 to write the energy balance statement and the criteria for the glider not “falling out” of the
loop.



Fig. 11-5

The energy statement is in word form: Kinetic energy at entry equals the potential energy to reach the top of the
loop plus the kinetic energy at the top of the loop

The minimum velocity condition is 

Substituting for vt the minimum energy statement is  yielding a minimum entry

speed of 

For a 200m radius loop (very large) the minimum ve for the glider is

For a 100m radius loop ve = 70m/s = 252km / hr

11-11 A grinding wheel of 30cm diameter is rotating with angular velocity of 3.0(rad / s) and slowing under
constant acceleration of -3.0(rad / s2 ). Calculate everything  possible about the motion at several different
times.

Solution: Circular motion problems even more than linear motion problems, often present a challenge as to how
to proceed from the data to the specific question. When confused about the specific route to follow in a
problem, the best thing to do is calculate something simple and let this first calculation lead you to others and
ultimately the answer. After doing the problem once the “hard way” you will learn more direct routes through
the problem. Given the data in this problem start calculating some simple things.

What is the angular velocity at 0.40s? Use

What angle has been turned through in this 0.40s? Use



What is the velocity of a point on the rim at 0.20s? First find the angular velocity.

And then find the linear velocity from v=rω=15 × 10-2m.2.4(rad/s)=0.36m/s.

With this acceleration, how long does it take for the wheel to come to rest? Use

How much angle is turned through in this time? Use

How far does a spot on the rim travel in this time? Use



Chapter 12
Rotational Dynamics

Because we take another view of rotational motion in the beginning of this chapter, you may find it helpful to
first review the discussion of rotational motion in the previous chapter.

Consider the rotation of a solid about some point in a plane. The rotation is counterclockwise in conformity
with trigonometry. The angle is again defined as arc length over radius, the standard definition appropriate to
radian measure θ= s / r.

Fig. 12-1

The average angular speed is defined as 

with the instantaneous angular speed defined by 

Similarly, the average angular acceleration is defined as 

with the instantaneous acceleration defined as 

The relationships between the point and the angle all start with s=rθ; then with successive derivatives comes

Remember that the radial, or center-directed, acceleration is arad=v2/r = rw2.

A force has to be associated with the angular acceleration. Force, however, does not lend itself well to motion
of a particle constrained to move in a circle, because most forces are not tangent to a circle. Torque works much
better. Torque is defined in a rather unusual manner. Unusual, that is, until its utility is seen through experience
in rotational dynamics.



Torque is the vector product of  r, the vector from the axis of rotation to the rotating point, and F, the force
applied at that point.

You may want to review the definitions of the cross product in the Introduction, Mathematical Background,
before continuing. Most problems in torque can be done with the geometric interpretation of the cross product.
Torque, r × F, is the product of r and the component of F perpendicular to r or \r\\F\ sin θ as shown on the left
in Fig. 12-2.

Fig. 12-2

The torque vector is perpendicular to the plane of r and F and follows the right-hand rule of rotating r into F. In
this case the torque is out of the paper.

12-1 Calculate the torque on a 2.5kg mass constrained to rotate in a 1.6m radius circle with a 250N force
applied at a (constant) angle of 35° between r and F.

Solution: The problem is depicted in Fig. 12-2. The definition of r × F. gives the direction of the torque as out
of the paper. Application of the crossing of r into F is similar to generating a righthanded coordinate system by
rotating x into y with the right hand with the thumb giving the direction of z. The magnitude of the torque is

Torque is r cross force, and similarly, angular momentum is r cross momentum or

Angular momentum is a vector in a direction perpendicular to the plane of r and p and magnitude equal to the
product of r and the component of p perpendicular to r.

12-2 For the situation of problem 12-1 add that the linear velocity is 2.8m / s and find the angular momentum.

Solution: The linear momentum is mv = 2.5kg(2.8m/s)=7.0kg.m/s. The linear velocity is the tangential velocity,
which is always at right angles to the radius; so the direction of the angular momentum vector is out of the
paper, and the magnitude of the cross product is simplified because the sine of 90° is one.

<><><><><><><><><><><><>



With these definitions for torque and momentum, several relationships can be derived. Start with

Torque is the time derivative of angular momentum as force is the time derivative of linear momentum. Now,
by analog, several things follow.

The total angular momentum of a system is the sum of the angular momentum of the individual pieces. Internal
torques are equal and opposite, so only external torques change the angular momentum of the system. The
statement

If the derivative of the total angular momentum is zero, the condition for no external torques, then the angular
momentum is a constant.

Now look to the kinetic energy associated with rotating particles. Each particle, or piece, of a rotating mass has
a linear speed v = rw, and the KE for each piece is a sum

This sum of the mr2's for the collection of pieces is called the rotational inertia, I, so that the KE can be written
compactly as

The rotational inertia, I, is easy to calculate for individual particles and has been calculated for many shapes.
Tabulations are found in most physics books and some mathematical tables.

12-3 Calculate the rotational inertia for one 2.0kg mass at the end of a 3.0m rod of negligible mass and then the
rotational inertia of a dumbbell consisting of two 2.0kg masses on the ends of a 6.0m long rod of negligible
mass pivoted about the center of the rod.

Solution: For the one mass, the sum of the mr2's is just 2.0kg(9.0m2)=18kg.m2.

For the dumbbell, there are two masses, and the rotational inertia would be 36kg.m2.

Notice that if the dumbbell were rotated about one mass then the rotational inertia would be



2.0kg(36m2 = 72kg.m2. This is of course neglecting the extent of the mass close around the rotating axis.

<><><><><><><><><><><><>

The total momentum of a rotating mass (point) is mvr. If the mass is rotating, then v is perpendicular to r
leading to a simple statement of angular momentum.

Angular momentum is L = mvr = mr2 w = IW.

By definition 

The power is 

Conservation of Angular Momentum

Angular momentum, as a property of the motion, is conserved and is a powerful tool in solving certain problems
in rotational motion. First, calculate a torque using the vector form for position and force and the determinant
for the cross product. See the Introduction, Mathematical Background for a review of this definition of cross
products.

Most problems do not require as extensive a calculation as this equation would indicate. For a position and
force vector in the x-y plane the torque reduces to a single z component.

12-4 Calculate the angular momentum of a 3.0kg mass at 3.0m in the x-direction and -2.0m in the y-direction
and with velocity components of 20m/s in the x-direction and

-30m / s in the y-direction?

Fig. 12-3

Solution: Write r and p in vector form: r=(3.0i-2.0j)m   p=(60i-90j)kg.m/s The angular momentum is



The angular momentum vector is 150kg.m2 / s pointed into the paper.

Second Solution: Now redo the problem with angle and magnitude. The angle between r and p is -22.6°. Figure
12-3 shows the trigonometric relations. Note that the angle between r and p is negative. The fact that the angle
is negative can be easily missed. Rather than rely on the sign of the angle, the better way to determine the
direction of the angular momentum vector is to use the right-hand rule and cross r into p with the thumb giving
the direction of L. The magnitude of L is

Applications.

Now to a few problems with rotating hoops and cylinders using rotational dynamics, conservation of energy,
and conservation of angular momentum.

12-5 A hoop of mass 1.0kg and radius 0.25m is rotating in a horizontal plane with angular momentum 4.0kg.m2

/ s. A lump of clay of mass 0.20kg is placed (gently) on the hoop. What happens to the angular velocity of the
hoop?

Solution: The moment of inertia for a hoop (from the table in your text) is I = mr2.

The angular momentum, L, is Iw,, so the initial angular velocity can be calculated from L = Iwi

Since the lump of clay is placed (gently) on the hoop (The hoop is rotating in the horizontal plane, and the clay
is placed on the hoop vertically.), placing the clay only adds mass to the hoop. This additional mass adds

“another” moment of inertia mr2, so with the angular momentum the same (no external torque has acted to
change it)

<><><><><><><><><><><><>



12-6 An amusement park game consists of a paddle wheel arrangement where you shoot at the paddles with a
pellet gun, thereby turning the wheel. The paddle wheel is set in motion with an initial angular momentum of
200kg.m2 / s and angular frequency of 4.0rad / s. You shoot eight 40g pellets at a speed of 200m/s at the
paddles. The pellets hit the paddles at 0.80m radius, stick, and impart all their momentum to the wheel. Find the
new angular momentum and the new angular frequency.

Solution: First calculate the initial moment of inertia of the paddle wheel from L = Iw.

Fig. 12-4

Now calculate the w after the wheel has absorbed the (momentum in the) eight pellets. The angular momentum
of each pellet is the linear momentum times the 0.80m radius.

For eight pellets the “absorbed” angular momentum is Lall pellets = 51.2 kg.m2/ 2

The new angular momentum is the original plus this, or 251.2 kg.m2 / s.

The I also has increased because of the additional mass at the 0.80m radius. This “additional” / is

The equation for calculating the new angular velocity

(L = Iw) is 

<><><><><><><><><><><><>

12-7 Now consider a 10kg solid cylindrical drum with radius 1.0m rotating about its cylindrical axis under the
influence of a force produced by a 30kg mass attached to a cord wound around the drum. What is the torque,
moment of inertia, and angular acceleration?



Fig 12-5

Solution: The moment of inertia for a solid drum rotating about its axis is mr2 / 2.

The torque on the drum is the tension in the cable times the radius of the drum. This tension is much like the
tension encountered in the problems of multiple blocks sliding on tables as found in Chapter 5, Force. The
system accelerates clockwise, so the unbalanced force on M makes it accelerate according to

The torque on the drum makes it angularly accelerate according to rF =lα

The acceleration of M is the same as the tangential acceleration, a=rτ so

Evaluating 

The angular acceleration is 

The torque is 

12-8 When the 30kg mass in problem 12-7 has fallen (starting from rest) through 4.0m, what is the linear
velocity, angular velocity of the drum, and the time for this to occur?

Solution: This part of the problem is approached from an energy point of view. The  30kg mass falls through a
distance of 4.0m. The work performed by gravity Goesinto translational

KE of the 30kg mass and rotational KE of the cylinder. The main difficulty in problems like this is remembering
that some of the work performed results in rotational KE and some in translational KE.



Putting in the numbers

Fromv = rω angular velocity is 

The time for this system to reach this velocity is from ω=ωo+τ1.

<><><><><><><><><><><><>

12-9 A solid sphere is constrained to rotate about a vertical axis passing through the center of the sphere. A cord
is wrapped around what would be the equator, passes over a pulley of negligible mass, and is attached to a mass
that is allowed to fall under the influence of gravity. Write a conservation of energy statement for the system.

Fig. 12-6

Solution: If the mass falls a distance h, then the energy gained by the system is Mgh. This energy Goesinto
translational kinetic energy of the mass and rotational kinetic energy of the sphere. A conservation of energy
statement is

The velocity of a point on the string and the velocity of the mass are the same and are related to the angular
velocity through v = rω, so the energy statement can be written in terms ofv.

Additionally, the formula for I=2mr2/5 can be substituted so



Note that the energy statement could have been written in terms of ω rather than v.

12-10 For problem 12-9 take the mass of the sphere as m=2.0kg,r=0.30m, the hanging mass as M= 0.80 kg, and
the height the mass falls through as h=1.5m. Find the velocity of the hanging mass, and the angular momentum
of the sphere.

Solution: The velocity of the mass, the rope, and a point on the equator of the sphere (all the same velocity) is

from the energy statement

The angular velocity of the sphere is 

The angular momentum of the sphere is

As an added exercise give the pulley in this problem a mass and a radius and go through the problem again.
Remember that I and ω will be different for the pulley.



Chapter 13
Equilibrium

The only difficulty you will encounter in doing equilibrium problems is lack of familiarity with the mechanics
of doing the problems. This is overcome by doing problems. The theory is simple. If something is not moving,
that is, it is in equilibrium, then the sum of the forces on it must be zero. Likewise if it is not rotating, then the
sum of the torques must be zero.

For problems in two dimensions these laws are stated very simply:

We start off with some simple problems requiring force analysis only and progress to problems involving
torques.

13-1 Hang a 50kg mass with ropes making angles of 30° and 45° as shown in Fig. 13-1. Calculate the tension in
the ropes.

Fig. 13-1

Solution: Note that all the forces come together at the knot in the rope so draw a force diagram about this point.
The only laws to apply are for equilibrium in the x and y directions.

This provides two equations in two unknowns. Because sin45° = cos45° rewrite

and

As an exercise work through this problem with different angles.

<><><><><><><><><><><><>



13-2 In the arrangement shown in Fig. 13-2, what is the minimum coefficient of friction to prevent the 8.0kg
mass from sliding?

Fig. 13-2

Solution: The forces come together where the cords come together. This point is not moving so apply the
equilibrium conditions here. The vector diagram at this point is also in Fig. 13-2.

The equilibrium conditions are:

Solving for T1: 

The force is: F=45N cos60° = 22.5N

This force is supplied by the frictional force µmg, so 

This is the minimum coefficient of friction that will prevent me system from moving.

13-3 A 500 N diver is on the end of a 4.0m diving board of negligible mass. The board is on pedestals as shown
in Fig. 13-3. What are the forces that each pedestal exerts on the diving board?

Solutions: There are no forces in the x-direction, but in the y-direction the pedestal at A and the diver are acting
down while the force at pedestal B is acting up. Pedestal B is in compression while pedestal A is in tension.
Draw the vector diagram and write the equations.



Fig. 13-3

In this problem apply  about pedestal A.  Taking the rotation point at pedestal A, the diver produces a
clockwise torque, and pedestal B an anti-clockwise torque that are in equilibrium. Note that this is not the only
possible rotation point.

Solve for FB: 

Solve for 

As an exercise write the  about pedestal B and the diver.

<><><><><><><><><><><><>

13-4 Place a 7.0m uniform, 150N ladder against a frictionless wall at an angle of 75°. What are the reaction
forces at the ground and wall and the minimum coefficient of friction of the ground?

Solution: Figure 13-4 shows the ladder with the 150N acting down at the center of the ladder and the sides of
the triangle formed by the ladder, wall, and ground. The vector portion of the figure shows the two components
of the reaction force at the ground. The reaction force at the ground is not necessarily in the direction of the
ladder. This (vector) force can be written in terms of a force (magnitude) at an angle (with horizontal and
vertical components) or directly in component form as done here. Writing the force in component force helps to
avoid the temptation to place the force at the same angle as the ladder. Either way requires two variables. Since
the wall is frictionless, the reaction at the wall is entirely horizontal. Refer to Fig. 13-4 and write the
equilibrium conditions.



Fig. 13-4

 The torque on the ladder is taken about the point where the ladder contacts the ground. Note that this
choice eliminates two variables from the torque statement. Torque is the (component of the) force at right
angles to the lever arm times that lever arm. The 150N weight has a component 150Ncos75° times 3.5m. The
reaction at the wall has a component RHcos15° times 7.0m so the sum of the torques equal zero statement is

so

FV and FH are related via the coefficient of friction, FH = µFV so µ = 20/150=0.13

Second Solution: There is another way to calculate the torques. Notice that the 150N force is horizontally
0.90m away from the pivot point. If the 150N force vector is moved vertically so its tail is on a horizontal line
from the pivot point, then the torque is easily written as (150N)(0.90m). A similar operation can be performed
on RH yielding a torque RH(6.8m). Vectors maintain their length (magnitude) and orientation (angle) but can be
moved about a vector diagram for (our) convenience. If the torque statement is written in this way it is identical
to the torque statement in the first solution.

As an exercise redo the problem with a person of known weight positioned a specific distance up the ladder.

13-5 Place an 80 N ladder 8.0m long on a floor and against a frictionless roller on a 5.0m high wall. The
minimum angle for equilibrium is 70°. Find the coefficient of friction between the ladder and the floor.

Solution: The roller is free to rotate so the reaction force is normal to the ladder. This reaction force can be
viewed as having vertical and horizontal components. The reaction force at the floor is written as vertical and
horizontal components. The geometry and vector diagram are shown in

Fig. 13-5. The length to the roller is obtained from the geometry: sin 70° = 5.0m/L  or L = 5.3m



Fig. 13-5

Write the force equilibrium equations.

The torque about the point on the floor is produced by the reaction force at the roller and the weight of the
ladder taken at its midpoint.

Rewriting with f = µN

Solve these equations from last to first to obtain

<><><><><><><><><><><><>

13-6 A 20kg beam 4.0m long is pivoted at a wall and supported by a cable as shown in Fig. 13-6. What is the
force at the wall and the tension in the cable?

Solution: There are two points of possible confusion in this problem. First, the mass of the beam is taken as
down at the center of the beam. Second, the reaction of the wall, at the pivot, has two components, one up the
wall (holding the end of the beam up) and one out of the wall (keeping the beam from sinking into the wall).



Fig. 13-6

Set up the vector diagram at the pivot and the point where the cable is attached. The reaction at the wall is
shown with components up the wall and normal to the wall. The weight of the beam is shown as down and from
the center of the beam with a component at a right angle to the beam. The tension in the cable is broken up into
vertical and horizontal components (for the sum of the forces laws) and a component at right angles to the beam
(for the sum of the torques laws). Applying the sum of the forces laws means looking at the vector diagram and
adding up all the vectors in the horizontal or vertical directions.

In applying the sum of the torques, it is convenient to take the pivot point at the wall. Since the angle θ is
unknown, the least complicated sum of the torques statement will come from the tension in the cable and the
weight of the beam.

Using the components at right angles 4.0m = 160N. 2.0m

Solve the last equation for the tension in the cable 

Use this value to solve for

Now divide these two equations 

and finally, R is obtained from one of the original equations 

The main points in this problem are the detailed vector diagram and the choice of the wall as the pivot point in
calculating the torques.



<><><><><><><><><><><><>

In the early problems, construction of the vector diagram was confined to one point where the forces all “came
together.” In problems where there is a strut or ladder or some other extended object the common mistake is to
miss a force or torque and have an incomplete vector diagram.

13-7 Set up a 300N strut 14m long with a cable as shown in Fig. 13-7. Find the tension in the cable and the
reaction force at the pivot.

Solution: The reaction force at the pivot is set up with vertical and horizontal components. The weight of the
strut is taken at the center of the strut with the 2000 N weight at the end. The tension is written along with all
the components needed to write the force and torque equations.

Fig. 13-7

Apply the sum of the forces laws.

Apply the sum of the torques law about the pivot point.

Note that the length of the strut does not influence the calculation.

Solve the torque equation for T.

Use this value to find FH and FV.

The reaction at the floor can be written in terms of magnitude and angle.



<><><><><><><><><><><><>

Another feature of equilibrium problems is that an object hung by two cords has its center of mass along a
vertical line determined by the (extension of) intersection of those cords. The argument is based on the fact that
a body hung by a cord has its center of mass along the extension of that cord. If the center of mass were not on
this line, a torque would exist and the body would move. Likewise if the center of mass were not on the
intersection of the two cords, a torque would exist and the body would move.

13-8 Consider a non-uniform bar of 200N weight and 4.0m length suspended horizontally between two walls
where the angles between the walls and cables are 37° and 50°. What are the tensions in the cables?

Solution The extensions of the cables specify the center of mass. Looking just to the center of mass and using
the common side of the triangle write

Fig. 13-8

 Solve for C and set equal 

and 4.0 tan tan° - x tan 37° = x tan 50° or 

Draw a vector diagram at the center of mass line. Write the equilibrium conditions as

Rewriting

Multiplying and adding



and

A sum of two angles trigonometric identity (see the Introduction, Mathematical Background) was used in the
denominator.



Chapter 14
Gravity

The basic law of gravity describes the force of one mass on another

where G is a constant that depends on the units of the m's, the masses, and r, the distance between centers. In SI
units the gravitational constant is G = 6.7 × 10-11 N.m2/kg2. The gravitational force acts along the line of centers
and is an action-reaction pair. (The force on both masses is the same.) Gravitational forces are vectors and
superpose (add) as vectors.

The gravitational force of attraction for a mass of small (compared to the earth) radius on the surface of the
earth is known as the weight of that mass on the earth and is

with  being called the acceleration due to gravity. Weight then is the familiar W = mg.
Acceleration units (the units ofg) times mass produce force or weight units. Also, “g” is a vector that points
between the center line of the masses involved.

14-1 What is the gravitational force of attraction between two 7.5kg bowling balls with 0.50m between centers?

Solution Use the gravitational force equation

Each ball is attracted to the other on a line between their centers.

Gravitational Potential

Following the general form for potential energy, the gravitational potential is defined as the work performed by
the gravitational force when r increases from r1 to r2.

The minus sign is in the integral because the force points opposite to the direction of increasing r. The force
decreases as r increases. The integral definition is necessary because the force depends on r. Performing the
integration



Look at the signs in this expression. If r1 is taken at the surface of the earth and r2 above the earth then the
gravitational potential at r2 is positive (less negative) with respect to the earth.

Notice that the general expression for gravitational potential is

The zero of gravitational potential is at r = ∞ The gravitational potential is negative at the surface of the earth
and becomes more negative as we go in toward the center of the earth.

With the gravitational potential energy and the conservation of energy we can calculate the escape velocity.
This is the velocity with which we would have to shoot something vertically up to completely remove it from
the earth's gravitational pull.

14-2 Calculate the escape velocity on the surface of the earth.

Solution: The escape velocity is the minimum velocity for a mass to escape the gravitational attraction of the
earth. Envision a mass being shot vertically up from the surface of the earth and write the energy statement for
it at two levels, the surface of the earth and some height r further out from the center of the earth. The
conservation of energy statement will read: The kinetic plus potential energy on the surface of the earth equals
the kinetic plus potential energy at some point r.

The escape velocity is that velocity that will produce zero velocity (v2 = 0) when the mass is infinitely far away
(when r = ∞, GmmE / r = 0). This reduces the equation to

The mass and radius of the earth are on the constants page of your text so

As an exercise calculate the escape velocity for the moon of radius 1.7 × 106 m and mass 7.4 × 1022kg.

<><><><><><><><><><><><>

14-3 What initial vertical speed is necessary to shoot a satellite to 300km above the earth?



Solution: Use energy analysis and the same energy-balance equation as in the previous problem with the
velocity at 300km equal to zero.

Putting in the numbers

or

Satellites

A satellite, whether artificial or moon, moves in a circular orbit about a larger planet. The gravitational force
supplies the center-directed acceleration necessary to make the satellite move in a circular orbit. Mathematically
stated the force balance is

 which reduces to v2r = Gm1 with the right hand side a constant.

The orbit radius, period, and velocity are related through

14-4 Calculate the speed, period, and radial acceleration of a satellite placed in orbit 400km above the earth.

Solution: The orbit radius is 6.4 × 106m+0.4 × 106 m = 6.8 × 106m

The velocity is 

The period is 

The radial acceleration is



<><><><><><><><><><><><>

A geosynchronous satellite is one that is orbiting at an equator and always over the same spot on earth. Using
the expression for the period of a satellite, find the height for a satellite with a period of 1.0 day.

Kepler's Laws

There are three Kepler's laws that govern planetary motion. Kepler based these laws on observations made
before the invention of the telescope! They are:

I. All planets move in elliptical orbits with the sun at one focus.

II. A line from the sun to the planet sweeps out equal areas in equal lengths of time (see Fig. 14-1).

III. The square of the period is proportional to the cube of the semi-major axis of the ellipse.

Kepler's second law is consistent with the angular momentum of the motion being a constant. Refer to Fig. 14-
1. For small angles the area swept out by the arc is equal to the area of a triangle with the side r∆θ nearly
perpendicular to the sides r. The area of the triangle is (1 / 2)(r∆θ)r. In calculus notation the differential area is
dA = (1/2)r2dθ, and the change in area with time is

Fig.14-1

The magnitude of the cross product of two vectors is proportional to the area of the trapezoid defined by the
vectors (see the Introduction, Mathematical Background). Here the two vectors defining the area swept out are r
and v. Rewriting rv as the magnitude of the cross product of r and v, or more conveniently mv,

but r × mv is L, the angular momentum, which is a constant of the motion. Kepler's second law is equivalent to
conservation of angular momentum.



Going back to rotational dynamics, dL / dt = r × F, and in planetary motion the force is gravitational and acts
along r, so r × F must equal zero, and if the derivative of the angular momentum is zero then the angular
momentum is a constant.

Equation 14-6 is based on conservation of energy and shows T as proportional to the 3/2 power of r. This is
verification of Kepler's third law for the case of circular orbits.

14-5 The orbit radius of the satellite of problem 14-4 is 6.8 × 106 m, and the period is 93 min. The orbit radius
of the moon is 3.8 × 108 m, and the period is 27.3 days. Is this consistent with Kepler's third law?

Solution: Kepler's third law states that T is a constant times the 3/2 power of the radius, so

 If the constant is the same then 

Putting in the numbers

The satellite and moon orbits verify Kepler's third law for circular orbits.



Chapter 15
Simple Harmonic Motion

Simple harmonic motion is the phrase used to describe a repetitive harmonic motion such as the motion of a
mass oscillating up and down on the end of a spring, the rotation of a point moving at constant speed along a
circle, or a pendulum in small (amplitude) oscillation. The most convenient visualization of an oscillating
system is the mass-spring system. This is also the one most analyzed. Simple harmonic motion is often
characterized by the period, the time for one oscillation, and the amplitude, the maximum excursion from
equilibrium. (Period is the time for one repetition and is measured in seconds, while the frequency is the
reciprocal of the period and is measured in Hertz or 1/s.) More complete analysis usually involves writing
statements about the total energy of the system.
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For a first look at simple harmonic motion consider the analysis of a mass-spring system. The kinetic energy is
(1/2)mv2, the energy associated with the moving mass, and the potential energy of the system is (1/2)kx2, the
energy associated with the elongation and compression of the spring. Here we assume the spring is a Hook's law
spring obeying F = -kx. You may want to review the discussion of the energy stored in a Hooke's law spring in
Chapters 7 and 8.

To describe the motion of the mass from a force point of view, take the force as -kx and equate that to ma with a
written as the second derivative of position.

-

If you don't have much experience in calculus, this may look like a formidable equation. It is not. It has a very
simple and obvious (once you've seen it) solution. Acceleration is the time derivative of velocity (a=dv/dt), and
velocity is the time derivative of displacement (v=dx/dt) as defined in Chapter 1. Acceleration, then, can be
written as the second derivative of the displacement.



The solution to this equation requires that the second derivative of a function of x with respect to time be
proportional to the negative of the function. This reduces to the question: What function differentiated twice
yields the negative of itself? The answer is a sine or cosine function or a linear combination of both. If you have
not encountered this yet, see the table of derivatives in the Introduction, Mathematical Background.

The derivative of the sine function is the cosine function and the derivative of the cosine function is the negative
of the sine function. Two derivatives of the sine function yield the negative of itself. This is also true of the
cosine function. The solution can also be written as the sine or cosine of a constant times t plus a phase angle.
Acosωt + Bsinωt and C(cosorsin)(ωt + θ) are equivalent solutions.

Take as a general solution x = Acosωt + Bsinωt

If the starting position (t = 0) is taken as an extreme of the motion, corresponding to maximum compression of
the spring, then B = 0, and A is the amplitude of the motion. If the starting position were taken at the midpoint
of the motion, then at t=0 the amplitude would have to be zero; therefore, A = 0 and B would be the amplitude.
(Remember sin0 = 0 and cos0=1.) The choice of initial condition determines whether the motion is described by
a sine or cosine function.

Use as a solution x=Bsinωt. Take two time derivatives to obtain

and substitute in the force law statement, -kx=-m(d2x/dt2)

In the statement x=Bsinωt, ω is 2π/T. The 2π effectively scales the sine function, and the ratio t/T determines
the fraction of 2π required for determining the value of the function. For example, at t=T (one period) the sine
function has gone through one cycle. At t=T/2 (one- half period) the sine function has gone through one-half
cycle. Because of the 2π factor, ω is called the angular frequency. The term frequency applies to f in the relation

In solving problems be careful to differentiate between frequency, f, and angular frequency, ω.

15-1 A mass-spring system has mass 2.0kg, spring with constant 3.0N/m, and amplitude of vibration 0.10m.
Calculate the angular frequency and frequency. Write expressions for the position, velocity, and acceleration as
a function of time. Take t=0 at the equilibrium position. Graph position, velocity, and acceleration as a function
of time.

Solution: The angular frequency is 

The frequency is 



If t=0 at the equilibrium position, then the displacement must be given by x=Bsinωt.

At t=0 the sine function is zero, so this is the appropriate function to describe the motion. For an amplitude of
0.10m this expression should read

The velocity is the time derivative of x or 

At t=0 the velocity, as the mass passes through the equilibrium position, is a maximum. The acceleration is
another time derivative of the velocity or

At t=0 the acceleration is zero; the spring is neither elongated nor compressed (at the equilibrium position), so
the force (and acceleration) of the mass is zero.

Fig. 15-2

These three curves graphed one under the other in Fig. 15-2 give a good picture of the motion from the position,
velocity, and acceleration point of view.



Look at these graphs and visualize the motion. At the equilibrium position, displacement is zero, the velocity is
a maximum, and acceleration is zero. As the mass moves to the positive maximum displacement, the velocity
decreases to zero and the acceleration (down) increases to a maximum. At the maximum displacement, the
velocity is zero and the acceleration is a maximum. As the mass starts down, the velocity is negative reaching
maximum again as the mass passes through equilibrium. Go over this picture of the motion until the relationship
between position, velocity, and acceleration is clear in your mind.

<><><><><><><><><><><><>

15-2 A piece of metal rests on top of a piston executing simple harmonic motion in the vertical plane with an
amplitude of 0.20m. At what frequency will the piece of metal “float” at the top of the cycle?

Solution: Take the motion to be described by y=(0.20m)cosωt.

Two derivatives produces the acceleration a=-(0.20m)ω2cosωt.

The maximum acceleration, which is the constant (0.20m)ω2, is at the extreme of the motion where the cosine
term is one. At the bottom of the cycle, the piece of metal will experience an acceleration greater than g and at
the top an acceleration less than g. The piece will “float” when that acceleration is greater than g.

Fig. 15-3

<><><><><><><><><><><><>

15-3 A mass-spring system has a mass of 0.50kg and period of 1.0s. The maximum velocity is 0.20m/s. Find the
frequency, angular frequency, constant of the spring, and displacement for this velocity and period.

Solution: The frequency is the reciprocal of the period or f=1.0(1/s), and the angular frequency is 2πf or
2π(1/s). The spring constant comes from the relation



The general expression for velocity is v=Aωcosωt where Aω is the maximum velocity. It makes no difference
whether the function is a sine or cosine. The maximum velocity is still Aω. The amplitude for this particular
motion then is

<><><><><><><><><><><><>

15-4 An 0.80kg mass hangs from a spring. When an additional 0.20kg mass is added the spring elongates
another 3.0cm What is the period of oscillation of the spring?

Solution: First determine the force constant of the spring from F=-kx

The period is the reciprocal of the frequency 

so                        

<><><><><><><><><><><><>

15-5 An oscillating mass-spring system has displacement 10cm, velocity -12m/s, and acceleration -20m/s2.
What is the period of the system?

Solution: Since the displacement is not zero at t=0, the motion cannot be described with a sinωt function. Since
the velocity is not zero at t=0, the motion in not at an extreme, and cannot be described with a cosωt function.
Because of the initial conditions, a sine or cosine function of ωt plus a phase angle must be used. It makes no
difference whether a sine or cosine function is used since the phase angle can absorb the 90° difference between
a sine and a cosine function. Look at Fig. 15-4 and go over the logic in this paragraph until it is clear in your
mind.

Take x=Acos(ωt+θ) then v=-Aωsin(ωt+θ) and a=-Aω2cos(ωt+θ)

Using the equations for x and a, at t=0, 

The period is from 



The phase angle comes from v(0) and a(0).

The specific functional relations are

Fig. 15-4

Look at these relations and relate them to what the system is doing at t=0. The amplitude is past its maximum
positive excursion and on the way down corresponding to the cosine function at 83° The velocity is negative
and heading toward its most negative value as is the negative sine function at 83°. The acceleration is negative
and tending toward zero just as is the negative cosine function at 83°.

Energy Analysis.

Simple harmonic motion can be analyzed from an energy point of view. The energy stored in a spring is kx2/2,
and the energy stored in the mass by virtue of its velocity is mv2/2. A total energy statement for the system then
is

which is most easily evaluated by looking at the extrema of the motion,

15-6 Find the maximum velocity of a mass-spring system with mass 2.0kg, spring constant 0.80N /m, and
amplitude of oscillation 0.36m.



Solution: All the energy of the system is stored in the spring at maximum displacement so the total energy is

This is the total energy in the system, and at zero displacement all this energy is in kinetic energy so

It is relatively easy, and quite instructive, to show that the total energy of an oscillating system is a constant.
Take an oscillating system with x=Asinωt and velocity v=Aωcosωt. Now place these expressions for x and v
into the total energy statement

But from the previous analysis ω2=k/m so the statement reads

 and since  

which shows that the total energy does not vary over time. The energy does not vary over one cycle, it goes
back and forth from kinetic to potential in a manner such that the total (energy) remains a constant.

<><><><><><><><><><><><>

15-7 Find the amplitude, angular frequency, and frequency for a mass-spring system with mass 2.0kg that is
oscillating according to x=(2.0m)cos(6πt/s). Write and graph the expressions for position, velocity, and
acceleration. Finally, calculate the total energy of the system.

Solution: The amplitude, angular frequency, and frequency are determined by comparing x=(2.0m)cos(6πt/s) to
the standard form x=Acosωt=Acos2πft.

The amplitude is 2.0m. The angular frequency is 6π(1/s). The frequency is 3(1/s).

The expressions for position, velocity (first derivative), and acceleration (second derivative) are

shown in Fig. 15-5 associated with the graphs.

In Fig. 15-5, the units are dropped in the argument of trigonometric functions, and the maximum values for the
velocity and acceleration are placed on the graphs.



Fig. 15-5

The conservation of energy statement is  For a 2.0kg mass the total energy can be evaluated
when x is zero and the velocity maximum.

<><><><><><><><><><><><>

15-8 For a  3.0kg mass-spring system executing simple harmonic motion according to y=(4.0cm)cos(πt/4-π/6),
what is the total energy and the y position for equal division of the energy between kinetic and potential?

Solution: The general expression for displacement is y=Acos(ωt+θ). Looking at the two expressions,

Knowing k, the total energy is 

The potential energy due to position is ky2/2 and y=Acos(ωt+θ) so that the energy due to position is
kA2cos2(ωt+θ)/2. The energy due to position is 1/2 the total when the factor

.



For this particular system, the time for equal division of the energy is when

The position of the mass for equal division of the energy is

As an exercise, calculate the velocity at this time.

<><><><><><><><><><><><>

15-9 A 0.20kg block traveling at 20m/ s slides into and sticks to an 0.80kg block resting on a frictionless
surface and connected to a spring with force constant 80N/m. What is the angular frequency, frequency, and
displacement as a function of time? Also what fraction of the original energy in the moving block appears in the
system?

Solution: The collision is inelastic; the blocks stick together, so applying conservation of momentum
0.20kg(20m/s)=(1.0kg)V. The velocity of the 1.0kg combination is V=4.0m/s. This is the velocity of the system
at zero displacement. The analysis of this collision is similar to the ballistic pendulum problem in the chapter on
collisions.

The total energy of the oscillating system is 

Fig. 15-6

The angular frequency is 

The frequency is from ω=2πf or f=ω/2π=1.4(1/s)

The general expression for the displacement is y=Asinωt. The sine function without a phase angle completely
describes the motion because it starts (t=0) at the equilibrium position with maximum velocity. The amplitude
of the motion is obtained from



so the specific expression for the displacement is y=(45cm)sin(1.4t/s)

The initial energy is all in the small block 

The energy in the oscillating system is 8.0J, so the fraction of the original energy that appears in the oscillating
system is F=8.0J/40J=0.20

Applications

The oscillating simple pendulum can be analyzed in terms of force. For small oscillations the tension in the
cable can be written in components; one vertical and the other the “restoring force,” the force that returns the
mass to equilibrium. For small θ, cosθ≅1 and sinθ≅x/l, with x being the displacement, approximately equal to
the arc length.

Fig. 15-7

For small angle oscillations Fcosθ≅F and Fsinθ≅-mgx/l=-(mg/l)x. Notice that in this equation mg/l plays the
same role as k in the mass-spring systems.

By analog then 
The most important point to note is that the period is independent of the mass. Historically this was one of the
first instruments to measure “g,” the gravitational constant.

<><><><><><><><><><><><>

The torsional pendulum, a disk suspended by a thin rod, can be analyzed using torque. The disk is rotated by
applying a torque. Torque is proportional to the angle in the same manner as force is proportional to
compression (or elongation) in a spring. The torque is written in terms of the moment of inertia and the angular
acceleration [ ] which is set equal to the total torque, -kθ the torsional constant times the
angle, yielding the equation



 which is the same form as the force equation for the oscillating mass-spring system. By analog
then θ=θmaxsinωt where

Fig. 15-8

15-10 What is the restoring constant (torsional constant) for a disk of mass 3.0kg and radius 0.20m oscillating
with a period of 2.0s?

Solution: The moment of inertia for a disk is

The restoring constant is 

Note that these are the correct units since torque has the dimensions N.m, and in Torque=-kθ the angle is in
(dimensionless) radians.

Damped Mass-Spring System

The system is usually depicted as a mass-spring with a dashpot, a piston in a thick liquid. In the case of the
spring, the restoring force is proportional to displacement, compression or elongation of the spring. With the
piston in the fluid, however, the retarding force is proportional to velocity, not position. Move your hand
through water and notice that the retarding force (the force on your hand) is proportional to velocity! The
velocity-dependent force component of a typical automobile suspension is called a shock absorber. It is usually
a piston in a cylinder of oil. Since the retardation force is velocity dependent the differential equation governing
the motion is



Notice that the velocity-dependent term has the same sign as the displacement-dependent term. It too opposes
the motion.

Fig. 15-9

This differential equation is solved with sophisticated techniques. Here we give an intuitive solution.

This second order differential equation is solved as a product of solutions, the position-dependent part and the
velocity-dependent part. The position-dependent part is a sine or cosine function with a phase angle. The
velocity-dependent part is from the velocity-dependent part of the equation

The solution to this part of the equation is one which when differentiated once produces the negative of itself.
The function that does this is an exponent to the negative power. The particular solution that satisfies this
differential equation is

where ω' is slightly different from ω. The damping of the exponential does exactly as we know from
experience. Oscillations subject to velocity damping (a velocity-dependent restoring force) eventually die out.



Chapter 16
Fluids

There are several definitions and concepts that are unique to the study of fluids. Let's review these basic
definitions and concepts working some problems along the way.

Density is simply mass per unit volume, or symbolically ρ = m/V. The density that is most useful in problems is
the density of water, which is 1g / cm 3 or 1000kg / m3.

The ratio called specific gravity is better called the specific density since it is the ratio of the density of another
substance to the density of water. Aluminum has a specific gravity of 2.7, which means that for the same
volumes, aluminum has 2.7 times the mass of water. Relative density or specific gravity is used to measure the
relative amount of sulfuric acid (compared to water) in a storage battery or the relative amount of ethylene
glycol (compared to water) in an automotive cooling system.

Pressure

The pressure in a fluid is defined as the force per unit area, ρ = F / A. And the units of pressure are N / m2 ,
also called a Pascal or Pa. Atmospheric pressure, the force per unit area exerted by the air, is 1.0 ×
105Pa=151b/in2 =1atm.

To determine the pressure at any depth in a liquid consider the differential change in force due to a column of
liquid of cross section A. The increase in force between the top and bottom of this differential piece is equal to
the weight of the piece.

It is convenient to write the mass of this little piece as ρ∆V so that the force (difference) is

Now ∆V for this piece is A ∆y so ∆F=ρgA∆y. The pressure is the force per unit area so rewriting

Dropping the differential notation
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Ify is measured from the bottom of the liquid then insert a negative sign on the right side of the equation. This
discussion of pressure leading up to equation 16-3 is equally valid whether the delta or differential notation is
used. This is true of most of the discussion of fluids. We start with delta notation and switch to differential
notation in some later development.

16-1 Calculate the pressure at the bottom of a 3.0m deep pool.

Solution: 

Notice that this pressure is the difference between the top and the bottom. This difference is known as the
gauge pressure. Adding the atmospheric pressure at the top surface of the pool gives the absolute pressure at
the bottom of the pool.

<><><><><><><><><><><><>

The typical automobile tire pressure is the gauge pressure. With the tire inflated the pressure might read 30 1b /
in 2. If the tire were “flat” the pressure would read zero. The gauge pressure for the “flat” tire would be zero but
the absolute pressure would be 15 1b / in2. Likewise the tire with gauge pressure of 301b / in 2 would have an
absolute pressure of (30+15) Ib / in2. The gauge that measures the tire pressure is measuring the difference in
pressure between inside and outside the tire.

Pressure exerted on a liquid in a closed container is transmitted throughout the liquid. The pressure is the same
in every direction varying only with height as described by equation 16-3. In most devices using fluids to
transfer forces, the fluid is nearly incompressible and height variations are insignificant.

16-2 Consider the classic problem of a hydraulic lift. In a typical service station 12 atm is applied to the small
area with the lifting column 9.0cm in radius. Find the force transferred to the large area and the mass of vehicle
that can be lifted.

Fig. 16-2

Solution: The hydraulic fluid is at the same level so ρ1 = ρ2. or 

A force F1 applied at A1 is multiplied by the ratio of the areas so F2=(A2/A1)F1

The lifting force F2 can also be rewritten as F2= A2(F1/A1=A2ρ1, and putting in the numbers



And the equivalent mass (from F=mg) is 3.1× 103 kg. This number is somewhat larger than the mass of typical
cars.

Barometer and Manometer

A simple atmospheric air pressure gauge is the mercury barometer. A closed tube is filled with mercury and
then inverted in a beaker of mercury. The pressure at the top of the mercury column is zero. And the column is
held up by the (atmospheric) pressure on the surface of the mercury. Looking to Fig. 16-3, the pressure at the
bottom of the column is ρgh. This experiment was first done by Torricelli, and the pressure was given as the
pressure associated with the column of mercury. Pressures are often measured in mm of Hg or Torr. and refer
back to this experiment.

Pressure exerted on a liquid in a closed container is transmitted throughout the liquid. The pressure is the same
in every direction varying only with height as described by equation 16-3. In most devices using fluids to
transfer forces, the fluid is nearly incompressible and height variations are insignificant.

16-2 Consider the classic problem of a hydraulic lift. In a typical service station 12 atm is applied to the small
area with the lifting column 9.0cm in radius. Find the force transferred to the large area and the mass of vehicle
that can be lifted.

Fig. 16-2

Solution: The hydraulic fluid is at the same level so ρ1 = ρ2. or 

A force F1 applied at A1 is multiplied by the ratio of the areas so F2=(A2/A1)F1

The lifting force F2 can also be rewritten as F2= A2(F1/A1=A2ρ1, and putting in the numbers

And the equivalent mass (from F=mg) is 3.1× 103 kg. This number is somewhat larger than the mass of typical
cars.

Barometer and Manometer



A simple atmospheric air pressure gauge is the mercury barometer. A closed tube is filled with mercury and
then inverted in a beaker of mercury. The pressure at the top of the mercury column is zero. And the column is
held up by the (atmospheric) pressure on the surface of the mercury. Looking to Fig. 16-3, the pressure at the
bottom of the column is ρgh. This experiment was first done by Torricelli, and the pressure was given as the
pressure associated with the column of mercury. Pressures are often measured in mm of Hg or Torr. and refer
back to this experiment.

Fig. 16-3

An open tube manometer as depicted in Fig. 16-3 can be used to measure pressure. The force exerted by the
gas is ρA, and this force raises the column of (usually) mercury by exerting a force equal to ρgV, the weight of
the column. The volume of the column. V is Ah  so equating forces.

The manometer measures the difference in pressure between two points and as such measures gauge pressure.
The open tube manometer is equally valuable as a vacuum gauge. The difference in column height (the height
of the mercury in the open tube is now lower than in the tube connected to the vacuum chamber) is a measure
of the vacuum.

Buoyancy

Material objects appear to weigh less when partially or completely submerged in liquids. This apparent loss in
weight is due to the buoyant force of the liquid. This buoyant force is expressed by Archimedes' principle: A
body partially or completely immersed in a liquid is buoyed up by a force equal to the weight of the liquid
displaced.

16-3 The classic problem in buoyancy is to determine if a “gold” statue is really gold by measuring its weight
in and out of water. A certain “gold” statue weighs 70N when out of water and 64N  when immersed in water.

Solution: With the statue suspended from a scale the weight is mg, or density times g, times the volume of the
statue. In equation form mg=ρ?gV = 70N.

In water the statue weighs less because of the buoyant force: ρ?gV - ρwgV = 64 N

Subtracting one equation from the other we can determine the volume from



With this value for V, calculate the unknown density from the first equation

This density is much less than the density of gold ρgold =19×103kg/m3) and closer to the density of lead (ρlead =
11× 103 kg/m3) suggesting that the statue is lead with a thin covering of gold.

This same experiment can be conducted by lowering the statue into a beaker of water on a scale. The volume is
determined by the increase in the level of water in the beaker. The drop in tension in the cord is offset by the
increase in the scale reading when the statue is lowered into the beaker and the calculations proceed as before.

<><><><><><><><><><><><>

16-4 A U-tube originally containing mercury has water added to one arm to a depth of 20cm. What is the
pressure at the water-mercury interface? What is the height of the mercury column as measured from the water-
mercury level?

Solution: Assume that the difference in air pressure can be neglected. The pressure at the watermercury
interface is due to the column of water plus the atmospheric pressure ρo, or p=po+pwg. 20cm . Neglecting po

gives the gauge pressure as

Fig. 16-4

At this level (the level of the interface) the  pressure on the mercury arm must be the same. (If it were not the
liquids would move!) The height of the mercury level is

As we expect, the same pressure is produced by a much shorter column of mercury.

Second Solution:Analytically the problem can be approached by writing expressions for the pressure at the
level of the water-mercury interface.



In the left arm pW = po + pWghW, where the subscript W refers to the water column.

In the right arm the pressure is pM = po + pMghM, where the subscript M refers to the mercury column.

Since these pressures must be equal at the water-mercury interface

For this problem 

Practice variations of this problem with different liquids (different densities).

<><><><><><><><><><><><>

16-5 A rectangular-shaped, open-top steel barge is 10m by 3.0m and has sides 1.0m high. The mass of the barge
is 8.0 × 103kg. How much mass can the barge hold if it can safely sink 0.75m?

Solution:  The volume of water displaced is length times width times allowed depth,
10m×3.0m×0.75m=22.5m3.   The buoyant force is the weight of the water displaced (Archimedes' principle)

Fig. 16-5

This buoyant force must support the barge (mB) plus the load (mL.

As an additional exercise calculate how deep the unloaded barge will sink in the water.

16-6  An iceberg floats in seawater.   What percentage of the iceberg is submerged?

Solution: Assume a cubical iceberg of side s. You can assume any shape you wish. Cubical, however, seems
convenient. The mass of the cubical iceberg is pices3 , and the weight is pices3g. Since the density of the iceberg
is less than the density of the seawater the iceberg will float. The buoyant force of the seawater is pSWg times
the volume submerged. Since the iceberg is cubical the submerged volume must be s2 , the area of the bottom of
the iceberg, times a fraction of the side k times s.



This buoyant force must equal the weight of the iceberg. pices3g = pSwgs2(Ks).

So K, the fraction of the iceberg submerged is 

Thus 92% of the iceberg is submerged.

Fluid Flow.

The last, and possibly most important, of the fluid laws are associated with the flow of liquids through tubes of
varying cross section. The best place to start on this is with a simple statement of mass flow in a pipe of
variable thickness.

Fig. 16-6

Mass flow requires p1A1v1dt = p2A2v2dt

Density is mass per unit volume, and Avdt = Adx is a differential volume, so that the above equation is a
statement that there is the same mass of fluid in the two differential volumes shown. Since in most fluids p1 = p2,
the mass flow (also called the continuity equation) statement reduces to

Now look to the Bernouli equation, which takes account of changes in the gravitational potential and pressure.
The law is understood from a work-energy point of view.  If liquid is flowing through a tube as shown in Fig.
16-7, then the work done on the fluid in pushing it through the tube must be manifest as increased potential and
kinetic energy.

Fig. 16-7



Consider a mass of fluid moving through this tube. The volume of this mass of fluid is

where the ds's are the respective distances along the tube necessary to make up the same mass of fluid. The
work performed on this mass of fluid is (note that the work is force, pA, times distance,ds).t

The change in kinetic energy, basically (1/2)mv2 , is 

And the change in potential energy (analogous to mgh) is dU = pgdV (y2-y1).

Equating the work performed to the energy change yields the Bernoulli equation

This is all the information necessary to do fluid problems as found in most physics texts. Buoyancy and
pressure problems do not usually present a problem. Calculating pressures is sometimes encountered in the
context of a flow problem, In flow problems the usual procedure is to first apply the mass flow statement,
equation 16-5. Then apply the Bernoulli equation. In the application of this equation it is often necessary to take
some of the terms as zero. The ability to know when to take a term as zero comes from experience.

Venturi Tube

The venturi tube is used as a siphon or speed indicator. The tube is constructed as shown in Fig. 16-8. Apply the
Bernoulli equation without the gravitational term (most venturi tubes are mounted horizontally).

Fig.16-8

From the mass flow equation, equation 16-5, A1v1 = A2v2 so



Since A1 is larger than A2, p1-p2 is positive. The pressure is reduced in the smaller section, or throat, of the
venturi. A side tube connected to the narrow region will siphon liquid or gas. The side tube also can be
connected to a pressure gauge to measure velocity, which is proportional to the square root of pressure.

16-7 Calculate the speed at which liquid flows out a small hole in the bottom of a large tank containing liquid to
a depth of 1.0m.

Fig. 16-9

Solution: Apply the Bernoulli equation 

Note that p1 = p2, so remove these terms from the equation. Because A1 >> A2,v1 is very small and is taken as
zero. Take y1 = 0, so y2 is the depth of the liquid. The Bernoulli equation for this case reduces to

The velocity of liquid from a small hole in a container depends only on the height of the column of liquid.

For a liquid height of 1.0m, 

Go back through this problem and note how the terms of the Bernoulli equation were handled, the pressure
being the same, and the logic leading to the v1 term being taken as zero. This is the hard part of this problem. If,
in doing a problem like this, you do not see that v1 can be taken as zero you will be stuck. You can move no
further on the problem because there is not enough data to calculav1.

<><><><><><><><><><><><>

16-8 For the situation of problem 16-7, find the volume flow rate, that is dV/dt, for a hole of radius 3.0mm.



Solution: The flow rate is the instantaneous rate of liquid flowing out of the container. This is most easily
obtained from the statement of the differential volume.

For a hole of radius 3.0mm and liquid depth 1.0m

<><><><><><><><><><><><>

16-9 A cylindrical container of radius 20cm contains water to a height of 3.0m. Two meters down from the
water level there is a hole 0.50cm in radius. Find the velocity and volume flow rate of water leaving the hole.
What is the shape of the stream, and where does it strike the ground?

Solution: Apply the Bernoulli equation 

The pressure is the same: p1 = p2. The velocity v1 is so small compared to v2 that it can be neglected: set v1 = 0.
The distance from the top of the water to the hole is 2.0m.

Fig. 16-10

The differential volume of liquid flowing out of the hole is dV = A2v2dt



To analyze the motion look at a differential piece of the stream. Set up a right-handed coordinate system with
origin at the exit hole. This coordinate system is similar to ones used in some projectile problems.  The
differential piece of liquid has initial velocity in the +y direction of 6.3m/s and is acted upon by gravity in the
+x direction.

The six equations of motion for acceleration, velocity, and position in the x and y directions are

These are the equations of a parabola or half of a parabola in this case.

The differential piece of water falls 1.0m so set x = 1.0m in the equation for x

This is the time for the differential piece of the stream to reach the ground.

Then y at t= 0.45s is y|t=0.45=2.8m. The stream strikes the ground at 2.8m from the tank.

The approximation of v1 as zero is justified with the continuity equation, A1v1 = A2v2.

The v2 is 1600 times v1!

As a side exercise solve the equation y=6.3t for t and substitute into the equation for x, obtaining an equation in
the form x = ay2, the equation of a parabola. Then substitute x = 1.0m to obtain y.



Chapter 17
Temperature and Calorimetry

Temperature and variations in temperature are measured by a variety of physical properties: volume of a liquid,
length of a rod, resistance of a metal, pressure of a gas at constant volume, or volume of a gas at constant
pressure. Thermometric devices (thermometers) are not all linear, though some are linear over a fairly wide
range, and it is necessary in selecting a thermometer to fit the linearity of the thermometer to the range of
temperatures to be measured.

The standard in temperature measurement is the constant volume gas thermometer. An ideal gas at low density,
usually helium, confined to a constant volume has a linear relation between temperature and pressure as shown
in Fig. 17-1. The dotted portion of the line is an extension of the linear relationship. Gas thermometers stop
being linear at low temperatures because the gas stops being a gas and becomes liquid or solid. Extrapolating
the straight line relationship gives an intercept of -273.15°C  corresponding to zero pressure. Figure 17-1 shows
graphs of pressure versus temperature for several different gases. These several gases show this linear
relationship between pressure and temperature; and while the slopes of the lines are different, they all
extrapolate to the same temperature.

Fig.17-1

The important point is that while the slopes are different, the relation between pressure and temperature is a
straight line over a wide range of temperatures, and the lines all extrapolate to one specific temperature, which
is taken as the absolute zero of temperature. This temperature is 0°K (Kelvin) or -273.15°C. (The international
standard is not to use the degree symbol with the Kelvin scale. Popular practice is either way.) The reason for
this rather odd number (-273.15) is that when the zero on the Celsius scale is calibrated with the freezing point
of water at standard atmospheric pressure, the absolute zero is 273.15 degree units below (this zero). The most
accurate calibration point for a thermometer is the triple point of water, where the conditions of pressure and
temperature are such that water, ice, and vapor all coexist at the same time.

The Kelvin and Celsius scales have the same size degree. The Fahrenheit scale uses the same end points for
calibration (freezing and vapor point of water) but the scale starts at 32 and ends at 212, giving a much smaller
degree. Temperature is written as 20°C or 50°C while temperature difference is written as 30C°.

17-1 Consider a linear temperature device such as the resistance of a piece of metal. If the resistance of the
device is 800Ω at 20°C and 900Ω at 60°C, what is the temperature when the device reads 835Ω?



Fig. 17-2

Solution: Figure 17-2 shows the linear relationship of the device. Since the slope is a constant, the slope of the
graph on the right is equal to the slope of the graph on the left (similar triangles).

So  or ∆T=14°C and the measured temperature is 34°C.

<><><><><><><><><><><><>

Hot objects placed in contact with cold objects cool and warm (respectively) according to a constant that
depends on the conditions of contact and the difference in temperature. This heating or cooling is most
conveniently expressed as a differential equation

In words this differential equation states that the change over time of the difference in temperature is
proportional to the difference in temperature. The rate at which something cools is directly proportional to the
difference in temperature with its surroundings. The negative sign is a reminder that the change in ∆T is such as
to reduce ∆T. The equation is solved by separating

The constant can be evaluated by taking an initial temperature difference ∆T0. Substituting into this equation for
t=0 and ∆T0 yields In ∆T0 = const and the equation reads In ∆T = In ∆T0 - kt or In and switching to exponential
format

This equation states that the difference in temperature between a hot body and a cold body in contact is
proportional to the initial difference and a decaying exponential. This is very much what we expect from
experience. Note that this equation is in the same form as other decay equations that describe, for example, the
rate of radioactive decay as proportional to the amount of decaying product remaining.



17-2 Two objects have an initial temperature difference of 20C°. In two minutes the temperature difference is
18C°. Calculate the time for the temperature difference to be 10C°.

Solution: This is a classic type of problem where the physical law is known, data is given to calculate the
specific relationship, and this relationship is used to predict something. Keep this process in mind as you go
through this problem. It is used in the solution of many problems in physics.

The basic law is ∆T=∆T0e-kt

Now, use the given data to determine k. Units are left off in the exponent to avoid clutter, but keep in mind that
the 2.0 is in minutes, so k will be in reciprocal minutes.

This gives k for this specific situation, and the law for this specific situation is

Now ask, what time is required for the temperature difference to decline to 10°C, ∆T=10°C for an initial
difference of 20°C.

10 = 20e -0.053t and switching to logarithms 

Go back over this problem and be sure you understand the procedure and how to manipulate the exponents and
logarithms. Practice performing these operations on your calculator so you will be able to do them rapidly and
accurately on a test.

<><><><><><><><><><><><>

Solids expand and contract with their change in length proportional to their length and change in temperature

The α's of various materials are tabulated in most physics texts.

17-3 A steel bridge is set in concrete pillars on opposite sides of a river. The bridge is 300m long, and the work
is performed on a day when the temperature is 18°C. What clearance is required for the bridge not to buckle at
45°C? (αsteel=11×10-6/C°)

Solution: The change in length is

A minimum of 8.9cm would be required for expansion.

<><><><><><><><><><><><>



For flat objects the change in length is isotropic (the same in all directions) so that the diagonal of a plate, the
diameter or circumference of a hole punched in the plate, or any length changes according to ∆l=αl∆T; so that
for areas

17-4 Calculate the change in volume of a brass sphere of 8.0cm in radius on going from 0°C to 100°C.
(αbrass=19×10-6/C°)

Solution: The change in volume is

The fractional change in volume ∆V/V is

The percentage change in volume is 0.57%.

<><><><><><><><><><><><>

Consider the effect of temperature on the period of a pendulum clock. The period of a pendulum is

Taking the differential with respect to l, the variable that depends on temperature

Now the ∆l can be written in terms of change in temperature as ∆l=αl∆T, so

A more interesting formula is one for the fractional change in period ∆t/t

17-5 Calculate the fractional change in period for a brass pendulum going through a 5C° change from summer
to winter (not unusual).



Solution:

As the temperature increases, the length of the pendulum gets longer, and the time for one oscillation gets
longer. Pendulum clocks run slower in the summer.

Calorimetry

Heat is a form of energy. The unit of heat is the calorie, the heat to raise 1.0g of water from 14.5°C to 15.5°C.
The kilocalorie or kcal is also popular. Food calories are actually kilocalories.

The British heat unit is the British Thermal Unit (BTU), the heat to raise 1.0 pound of water from 63°F to
64°F. The joule equivalence is 1cal=4.2J.

The quantity of heat necessary to raise the temperature of a mass of material is

where c, the specific heat, is the amount of heat per g.C° for the material. The specific heat for water is
1.0cal/g.C°. Tables of specific heats are in most physics texts.

17-6 How much heat is required to raise a 1.8kg copper tea kettle containing 2.0kg of water from 20°C to
100°C? The specific heat of copper is 0.092cal/g.C°.

Solution: The total heat is 

The specific heat is sometimes expressed in J/kg.K rather than cal/g.C°. For the previous problem the
calculations would read

Use the calorie to joule equivalence to verify the numbers in this problem.

The quantity of material is sometimes given in moles, n. The total mass is related to the number of moles via
m=nM where M is the mass per mole of the material. Measuring the mass in number of moles, heat capacity
would be calculated with the molar heat capacity, the heat in joules per mole.C° or mole.K. (Remember, the
Celsius and Kelvin degrees are the same size.)

The equilibrium temperature of a mixture can be determined by knowing the quantity of heat necessary to affect
a change in temperature

17-7 A 150g cup of coffee (water) at 80°C has added to it 20g of sugar (carbon) at 25°C. What is the final
temperature of the insulated mixture? (cc=0.12cal/g.C°)



Solution: In this problem heat from the water raises the temperature of the carbon until they are both at the
same temperature. Saying it simply, this is a Goesinto problem. The heat in the water Goesinto heating the
carbon until they both reach an equilibrium temperature, T.

The heat leaving the water is 150g(1.0cal/g.C°)(80-T°C.

The final temperature is between 80 and 25, so writing the temperature difference as 80-T produces a positive
number (of calories).

This heat goes to raise the temperature of the carbon 20g(0.12cal/g.C°)(T-25)°C.

Notice that the temperature difference in parentheses is written so as to produce a positive number.

The equation will read: The heat from the water Goesinto heating the carbon.

or

These problems can be complicated with three or more components at different temperatures. If you guess
wrong as to where the equilibrium temperature lies, the calculations will produce a temperature higher or lower
than the original temperatures. If this occurs you know that the initial assumption was wrong, so go back with
another (better) assumption of the equilibrium temperature and do the problem over again. The main problem
with calorimetry problems is keeping the algebraic signs correct. These problems can be done with a positive
heat minus negative heat approach, but the Goesinto approach cuts down on the number of negative signs and
reduces the possible number of places where you can get a sign wrong.

Phase Change

If water is heated from room temperature to the vapor point it takes 1 calorie of heat (energy) to raise each gram
1K degree. When the vapor point is reached a discrete amount of energy is required to convert each gram (or
kilogram) of water at 100°C to vapor without raising its temperature. This amount of energy is called the heat
of vaporization and for water is 2.3×106J/kg.

A similar phenomenon is observed when a solid is taken to the liquid phase. The heat of fusion, the heat to
change 1.0kg of solid (water) to liquid at 0°C is 3.3×105J/kg. Tables of heats of fusion and vaporization are in
most physics texts. Problems involving heat of fusion or heat of vaporization must be done carefully, because
the energy requirements for these changes of state are very large. Converting a small amount of ice to water
consumes a large amount of energy compared to raising the temperature of the water. It takes 4.2×103J per kg
for each degree of temperature while it takes 3.3×105J per kg to convert ice to water with no temperature rise!

17-8 An insulated container holds 3.0kg of water at 25°C. One kilogram of ice at 0°C is added to the mixture.
What is the final temperature and composition (ice and water) of the mixture?

Solution: First calculate the energy to bring all the water to 0°C.

Now ask how much ice could be melted with this amount of energy.



All the ice will not be melted so the final mixture will be 3.95kg of water and 0.05kg of ice all at 0°C. There
will be no further heat transfer because both the water and the ice are at the same temperature.

<><><><><><><><><><><><>

17-9 If in the previous problem the amount of ice is reduced to 0.50kg what is the final temperature of the
composition?

Solution: Based on the previous calculation there is not enough ice to lower the temperature of the water to
0°C. One way of doing the problem is to calculate the drop in temperature of the 3.0kg of water at 25°C due to
the melting ice, then treat the problem as a mixture of two amounts of water at different temperatures.

However, since we already know that all the ice melts and the final mixture is between 0°C and 25°C, the
equation for the final temperature can be set up with the statement: The energy in the 3.0kg of water at 25°C
Goesinto melting the ice and raising the temperature of the 0°C water.

Heat Flow

Conduction of heat or heat flow depends on the temperature difference, cross section, separation, and a constant
of the material according to

The units of H are energy per time or Joule/sec which is a watt. The thermal conductivity, k, has units of
W/m.K.

17-11 Calculate the heat flow through a wooden door of area 2.0m2 and thickness 5.0cm when the temperature
difference is 20K. The k for wood is 0.10W/m.K.

Solution: The heat flow is 

<><><><><><><><><><><><>

17-11 Two rods with cross sections of 4.0cm2, one copper of 1.2m length, and the other steel of 1.0m length,
are connected together with their opposite ends held at 100°C and 0°C as shown. What is the heat flow and the
temperature of the junction at equilibrium?kcu=380W/m.C° and kst=50W/m.C°)



Solution: The key to this problem is that the heat flow in the two rods must be the same. If the heat flow in the
copper is greater than the heat flow in the steel then the joint will get hot. This does not happen so the heat flow
must be the same.

Fig.17-3

Take the temperature of the junction as Tj, and set the heat flows equal

Putting in the numbers

The heat flow is from either formula

Calorimetry combined with other energy analysis techniques can be used to solve other types of problems.

17-12 A block of ice initially at 50kg and traveling at 5.4m/s slides along a horizontal surface until it comes to
rest. Assume all the heat generated due to friction is used to melt the ice. How much ice is melted?

Solution: All the kinetic energy in the block Goesinto work expended to overcome friction, and all this energy
Goesinto melting the ice. The initial kinetic energy is

All this energy is used to melt the ice.

<><><><><><><><><><><><>

17-13 A 5.0kg bullet traveling 800m/s passes through a 5.0kg copper block at rest on a frictionless table.
Twenty percent of the kinetic energy of the bullet goes into heating the block. Thirty percent goes into kinetic
energy of the block. Fifty percent remains with the bullet. The block and bullet are initially at 25°C. What is the
temperature and speed of the block and the speed of the bullet? (ccu=390J/kg.C°)



Solution: First find the initial kinetic energy of the bullet.

Twenty percent of this, or 320J, goes to heating the copper block.

Thirty percent, or 480J, goes to kinetic energy of the block.

Fifty percent, or 800J, stays with the bullet.



Chapter 18
Kinetics and The Gas Laws

A complete description of a gas is given by the pressure, volume, temperature, and amount (total mass or
number of moles) of the gas. What is called the equation of state (equation 18-1) describes the relation
between p, V, T and m or n. These four properties completely describe a gas just as position, velocity, and
acceleration completely describe the motion of a particle.

Early experiments on gases produced Boyle's law, pV = constant (at constant temperature), Charles' law, p =
constant . T (at constant volume), and finally, the ideal gas equation of state pV = nRT with n the number of
moles and R the gas constant equal to 2.0cal / mol.K or 8.3 J / mol.K. A mole of a gas contains a specific
number of molecules. The number of molecules per mole is Avogadro's number, NA = 6.0×1023 molecule /
mole. The mass of a mole of gas depends on the atomic weight of the gas. The mole and Avogadro's number are
defined as the number of carbon 12 atoms in 12g of carbon 12. For helium (atomic weight 4.0) one mole of the
gas contains Avogadro's number of helium atoms and has mass of 4.0g.

The ideal gas law not only describes the p, V, T relationship but allows that for the same amount of gas the
relationship between two different states is

allowing a large number of problems to be solved. In applying this formula, Kelvin temperatures must be used
throughout, and the pressure and volume must be written in the same units.

18-1 What is the volume of a mole of ideal gas at standard temperature and pressure (STP)?

Solution: Standard temperature is 0°C = 273K. Standard pressure is latm = 1.0 × 105 Pa. From the ideal gas law

This is a 23 liter container or a box 0.28m on a side Remember that a Pascal is a N/m2.

<><><><><><><><><><><><>

18-2 An air bubble at the bottom of a lake has a volume of 20cm3, pressure of 4.9Pa, and temperature 4°C. The
bubble rises to the surface where the temperature is 20°C and the pressure 1.0 Pa. Find the volume as the
bubble reaches the surface. Also find the number of moles of the gas.



Fig. 18-1

Solution:  remembering that T is written in kelvin.

or

To find the number of moles use pV/T = nR and the given conditions at the bottom of the lake.

<><><><><><><><><><><><>

18-3 A weather balloon is inflated with helium at just over atmospheric pressure of 1.2×105 Pa, temperature
20°C, and volume 2.5m3. When the balloon rises to where the pressure is 0.50×105 Pa and temperature is -
58°C, what is the volume?

Solution: Using 

or 

As an exercise find the number of moles of this gas.

Variation of Pressure with Elevation.

Consider a slab of air in a column of air and note that the increase in force between the top and bottom of the
slab is due to the weight of the slab. Envision this as holding your hand horizontally at two different heights.
Higher up in the column of air there is less air above your hand and thus a lower pressure.



Fig. 18-2

Writing this difference with differentials, F2 = F1 + dW

Since p = F / A and dW = pgAdy = pgdV, this statement can be written as

where dp is the difference, top to bottom, of the slab. The minus sign serves to remind us that as we go up in
the atmosphere (column) the pressure goes down (there is less air in the column).

Going back to pV = nRT and the relation mass equals moles times molecular mass (m = nM) (remember that
each mole of Helium is 4.0g)

, or using density , so equation 18-3 can be written as

which integrates to ln  with ln A the constant of integration.

At y = 0 (on the ground), p = po, ln po = ln A, and

 or switching to exponents 

Note that in this derivation the temperature is assumed constant. The density of the air is not assumed constant
because V in the density relation ρ = (m/V) was replaced with nRT / p.

18-4 What is the pressure at 3000m elevation above the earth?

Solution: Assume T = 0°C = 273K. T decreases with height because the air is heated, primarily by radiation
from the earth, so consider this an average temperature over the 3000m. Air is mostly oxygen and nitrogen and
has an average molecular weight of 28.8g/mole or 28.8×10-3 kg / mole. The gravitational constant varies only
slightly over this distance.

First calculate the exponent 

then the pressure p = poe-0.374 = 1.0atm(0.69) = 0.69atm



Fig. 18-3

The pV / T = constant relationship for an ideal gas is depicted in Fig. 18-3 as a collection of pV = constant
curves for different temperatures. Each line of this family of hyperbolas is called an isotherm, a curve of
constant temperature. A gas at constant temperature has its pV relation defined by these curves. For example, if
a gas is expanded at constant temperature, the pressure follows the pV isotherm for that temperature.

Kinetic Theory

Thermodynamics is a very neat and compact subject in that the equation of state pV = nRT relation can be
derived with some simple assumptions and the application of basic force, momentum, and energy concepts. The
kinetic theory of gases leads directly to the equation of state for a gas.

Start withN identical molecules in a cube of volume V and sides d, and make the following assumptions and
restrictions on their behavior.

1. The molecules are small compared to the dimensions of the container and the distance between molecules.

2. Only collisions with the walls are considered; collisions between molecules are ignored.

3. Collisions with the walls are elastic, and the momentum transferred is manifest as pressure on the walls.

4. The molecules and the walls are in thermal equilibrium. There is no energy transfer between the molecules
and the walls.

Fig. 18-4



A molecule with velocity v and components vx, vy, vz makes an elastic collision (momentum conserved) with the
x-wall. The change in momentum of the molecule is numerically equal to the momentum imparted to the wall
(∆p)mom = 2mvx.

This is the same expression you would write for a tennis ball bouncing off a wall. The subscript identifies this
as momentum and not pressure. The time between collisions with the same wall is the time for the molecule to
go to the opposite wall and return, or 2d/vx = ∆t. Therefore the average force exerted on the wall by this
molecule is

To find the force over the entire area of the wall, we need to sum all the molecular velocities.

The symbolism for this summation is . The  means sum the velocities, and the index, i, means to
take that sum over all the molecules. The average value of the velocity in the x-direction then is

The total force on the wall due to all the molecules is 

The velocity is the same in all three directions so  is one-third (v2) avg.

Again, the total force on the wall is 

The pressure is the force per unit area, d2 in this case, so

Adding a factor 2 over 2, the pressure can be written with familiar terms

where the expression m(v2)avg/2 is identified as the average translational kinetic energy of the molecule.
Writing equation 18-6 another way

where (KE)tr is the total translational kinetic energy of all N molecules.



Equation 18-7 can be compared to pV = nRT, the equation of state for the gas. However, it is more instructive to
rework the equation of state. The expression nR is the product of the number of moles of the gas and the gas
constant, in joule per mole-kelvin. The number of moles times the gas constant per mole is the same as number
of molecules times a gas constant per molecule. Specifically nR = Nk, where k is the gas constant per molecule
as opposed to R which is the gas constant per mole. For one mole N is NA in nR = Nk and k is easily calculated.
The k is the Boltzmann constant of value 1.4×10-23 J / K. Writing the equation of state with Nk rather than nR
produces

Comparing equations 18-6 and 18-8

This identification shows that the temperature of the gas is directly proportional to the kinetic energy of the
molecules. If a container of gas is heated, the pressure increases due to the molecules moving faster!

Rearrange this equation to read 

A gas molecule acting as a mass point confined to a box is viewed as being able to move in three mutually
perpendicular directions. In the language of kinetic theory the molecule has three degrees of freedom. Looking
at this equation then (1/2)kT of energy is associated with each degree of freedom.

The root-mean-square speed is defined as the square root of (v2)avg, which is

Look back to equation 18-6 and note that for the specific conditions that the gas and the walls be in thermal
equilibrium, pV is a constant. This is Boyle's law.

Again looking to equation 18-6, the pressure for constant volume is proportional to (v2)avg and in equation 18-9
(v2)avg is proportional to temperature. Pressure being proportional to temperature at constant volume is Charles'
law.

18-5 Two moles of helium are in a tank at 25°C. Find the total translational kinetic energy, the kinetic energy
per molecule, and the rms speed of the atoms.

Solution: The total translational kinetic energy is



The energy per molecule is 

The rms speed is 

<><><><><><><><><><><><>

18-6 Isotopes of uranium are sometimes separated by gaseous diffusion. The lighter isotope, having a higher
speed diffuses more rapidly than the heavier isotope. What is the ratio of the rms speeds of U 235 and U 238?

Solution: The rms speed is . The ratio of these speeds is

Heat Capacity of Gases

In the previous section we took the energy in the gas as the translational motion, with kT / 2 or nRT / 2 the
amount of energy associated with each degree of freedom. For a container where the gas has three degrees of
freedom, then the energy associated with the motion of the molecules is

and the change in energy with temperature is ∆KEtr = (3/2) nR∆T

The quantity of heat associated with a rise in temperature for n moles of a gas is

where CV is the molar heat capacity, the heat to raise one mole of the gas one kelvin. The units of CV are J / mole
K. It is important to differentiate between the heat capacity for constant volume and for constant pressure. More
heat is required to raise the temperature of a gas one kelvin at constant pressure than at constant volume because
the change in volume requires (additional) work to be performed in the expansion. Associating ∆KEtr with ∆Q,
CV should equal 3R/2. Measurements on monatomic gases verify this relation.

Fig. 18-5



The diatomic gases have additional degrees of freedom. Figure 18-5 illustrates a diatomic molecule in
translation, then in rotation, first in the x-y plane and then in the x-z plane, and finally with the molecule in
vibration. The rotation adds two new degrees of freedom and the vibration adds another two degrees of
freedom.

Experimental measurements on diatomic molecules show that for low temperatures (three translational degrees
of freedom only) CV = 3R / 2. As the temperature of the gas is increased the diatomic molecule begins to rotate
(adding two more degrees of freedom) and the CV climbs to 5R / 2. At even higher temperatures the molecule
begins to vibrate (adding another two degrees of freedom) and the CVreaches 7 R / 2. This is shown in Fig. 18-6.

Fig. 18-6

At sufficiently high temperatures diatomic molecules require more heat to raise their temperatures one kelvin
than do monatomic molecules because diatomic molecules are not only translators but rotators and possibly
vibrators. Most diatomic molecules are rotators at room temperature.

18-7 How much heat is required to raise the temperature of 2.0 mole of monatomic gas 25K starting at room
temperature.

Solution: Use ∆Q = nCV∆T with CV for a diatomic gas as 3 R / 2 so

<><><><><><><><><><><><>

18-8 For the previous problem find the heat required if the gas were diatomic.

Solution: Assume that at room temperature the diatomic molecule is a translator and rotator (see Fig. 18-6) so
that CV = 5 R / 2. Then



Chapter 19
First Law of Thermodynamics

The first law of thermodynamics is a conservation of energy statement for thermodynamic systems that
exchange energy with their surroundings. It states that energy cannot be created or destroyed, but may only be
changed from one form to another. The discussion is restricted to ideal gases and systems with constant mass.
The quantity of heat, Q, added to the system and the work performed by the system, W, are taken as positive.

Work During Volume Change

Place a gas in a cylinder with a moveable piston. If the gas is allowed to expand at constant temperature, there is
a force on the piston F = pA, and this force acting over a distance ∆x is the work performed by the system.

Fig. 19-1

Figure 19-1 shows the cylinder with moveable piston and a p-V diagram. The single (p-V) curve is an isotherm,
a constant temperature curve.

In differential notation

The total work in expanding from V1 to V2 is the area under the p-V curve from V1 to V2. This is analogous to a
spring where the work to compress the spring is the area under the curve of F vs x (see Chapter 7, Work and the
Definite Integral).

The pressure depends on p through pV = nRT. At constant temperature the system follows the curve in Fig. 19-
1. Writing p in terms of V



Since the gas is expanding at constant temperature, it is moving along an isotherm (T = const) line so p1V1 =
p2V2, and another expression for work is

19-1 Two moles of an ideal gas maintained at 20° C expand until the pressure is one-half the original. How
much work is done by the gas?

Solution: Since the gas remains at constant temperature, it goes from one state to the other along an isotherm
(see Fig. 19-1).

<><><><><><><><><><><><>

19-2 A gas at constant pressure of 4.0 × 105 Pa is cooled so that its volume decreases from 1.6m3 to 1.2m3.
What work is performed by the gas?

Solution: Since pressure is a constant the work performed is from equation 19-1.

The negative sign indicates that work was done on the system by an outside agent.

Internal Energy and the First Law

In going from state (p, V, T) to state (another p, V, T) a gas goes through a set of intermediary states. These
states are called the path the system takes. On the p-V diagram in Fig. 19-2 the point p1V1 represents the initial
point and p2V2 the final point.

Fig. 19-2

If the gas were taken along the isothermal line, then the work performed would be the area under the p-V curve
as shown earlier. Consider, however, two different paths. First, the path from 1-3-2 could be accomplished by
expanding the gas at constant pressure (1-3) then reducing the pressure to reach p2. In this case the work
performed would be the area under the 1-3 line.



A second path from 1-4-2 is accomplished by reducing the pressure to p2 then expanding the gas to V2. In this
case the work performed would be the area under the 4-2 line.

The work performed by the system in going from state 1 to state 2 via the 1-3-2 route is different from the work
performed via the 1-4-2 route. Since there are an infinite number of possible routes from state 1 to state 2, the
amount of work performed in going from state 1 to state 2 depends on the path.

Now consider an ideal gas in a container with a moveable piston and heat source (Fig. 19-3).

The gas atp1V1T1 is heated to a state p2V2T1. Heat is added from the reservoir to change p and V but not T.

The same amount of gas is placed in another container of volume V2, but the gas is confined to V1 with a
breakable partition and the space above V1 is evacuated. If the partition is broken, the gas expands to V2 without
a change in temperature and sufficiently rapidly so there is no heat transferred in the process. This rapid
expansion of a gas into a vacuum is called free expansion. These two extreme routes are illustrative of the
infinite number of possible routes, each requiring a different amount of heat, from p1V1T1 to p2V2T1. Therefore,
the amount of heat necessary to go from one state to another depends on the path.

Fig. 19-3

While the amount of heat to go from one state to another depends on the path and the amount of work to go
between these two states depends on the path, the difference, heat minus work, is independent of the path and
always appears as a change in internal energy of the gas. In equation form this is

This last statement is the first law of thermodynamics and in words states that heat into a system appears
either as an addition to the total internal energy or work performed by the system. Going from one state to
another where the temperature of the state is the same, the heat in equals the work performed. Going from one
state to another where the temperature of the state is not the same the heat equals the increase in internal energy
plus the work performed.

19-3 You eat 100 food calories worth of nuts. How high would you, at 65kg, have to climb to “work off” these
100 calories?

Solution: The 100 food calories is 100kcal into your (thermodynamic) system. The work to reduce your total
internal energy back to what it was before eating the nuts is



<><><><><><><><><><><><>

19-4 In a certain process 1.5×105 J of heat is added to an ideal gas to keep the pressure at 2.0×105 Pa while the
volume expands from 6.3m3 to 7.1m3. What is the change in internal energy for the gas?

Solution: Apply the first law ∆U = ∆Q - ∆W. Since the pressure is constant

The internal energy of the gas has been decreased by 1.0×104 J.

<><><><><><><><><><><><>

19-5 An ideal gas initially at 3.0×105 Pa, volume of 0.030m3, and temperature 20°C is heated at constant
pressure to a volume of 0.120m3. How much work was performed by the gas? If 80KJ of heat energy was
supplied to the gas, what was the change in internal energy?

Solution: The work performed is

The increase in internal energy is

<><><><><><><><><><><><>

There are several different thermodynamic processes that occur often enough to warrant definition.

An isothermal process occurs at constant temperature.

An adiabatic process is one where no heat is transfered in or out of the system (∆Q = 0).

An isobaric process occurs at constant pressure (W = p∆V).

An isochoric process occurs at constant volume (W = 0).

Heat Capacities of Ideal Gases

The heat capacity of an ideal gas depends on whether the measurement is made at constant volume, CV, or
constant pressure, Cp.

At constant volume (∆V = 0) no work is performed by the system, so according to the first law ∆Q = ∆U. For n
moles requiring CV amount of heat per mole



At constant pressure work is performed. Defining the heat capacity at constant pressure as the heat to raise one
mole of a gas one degree,

Since the gas expands in this process, work, ∆W = p∆V is performed. From the ideal gas law p∆V = nR∆T so
∆W = nR∆T. Substituting in the first law in the form ∆Q = ∆U + ∆W, nCp∆T = ∆U + nR∆T. Since the internal
energy depends only on temperature ∆U = nCV∆T and

Measurements on gases confirm this relationship.

19-6 What is the total internal energy of 10 moles of an ideal monatomic gas at 20° C?

Solution: A monatomic gas is composed of single atoms that behave as mass points, and as such, they can only
translate. They cannot rotate or vibrate. See problem 18-5 and the associated discussion to confirm that the
internal energy is (3/2)nRT.

<><><><><><><><><><><><>

19-7 The heat necessary to raise the temperature of 10 moles of an ideal gas at a constant pressure  of 1.0 × 105

Pa 10 degrees is 2100J. What is the volume change and the heat capacity at constant pressure and constant
volume?

Solution: The work performed in the volume change is ∆W = p∆V = nR∆T so

Starting with the basic statement ∆Q = nCp∆T the heat capacity at constant pressure is

The gas constant R is 8.3 J / mol . K so



19-8 Two moles of an ideal gas at a pressure of 1.0atm has 400 J of heat added in expanding from a volume of
4.7 × 10-3 m3 to 7.0 × 10-3 m3. What is the change in internal energy and temperature? What are the specific
heats?

Solution: The work performed is W = p∆V = 1.0 × 105 N / m2 (2.3 × 10-3m3) = 230J.

The change in internal energy is from the first law ∆U = ∆Q - W = 400 J - 230J = 170J.

The change in temperature is from ∆U = (3 / 2)nR∆T, or

The heat capacity at constant pressure is from ∆Q = nCp∆T, or

The heat capacity at constant volume is

Adiabatic Processes.

Adiabatic processes are ones where there is no heat transfer between the system and its surroundings. Rapid
volume changes where there is no time for heat transfer are characteristic of adiabatic processes.

Fig. 19-4

A model adiabatic process is shown in Fig. 19-4. An ideal gas in an insulated container with a moveable
weighted piston rapidly expands when the weight is removed. The volume increases, and the pressure and
temperature drop with no heat in or out.

From the first law ∆U = -W and ∆U = nCv∆T and W = p∆V. Writing the first law with p replaced from the ideal
gas law pV = nRT



Switching to differential format 

The factor R / CV is usually written in the form

Rewriting,  is integrated directly as a logarithm

In T + (γ - 1) InV = In (const), and applying the laws of logarithms TVγ-1 = const

Again applying the gas law pV = nRT,  or pVγ = (another) const.

For a monatomic gas γ = 1.40. For adiabatic expansions there are two relationships

The p-V curves for the pVγ = const are a lot like pV = const curves. The pVγ = const curves are called adiabats
and are shown in Fig. 19-4 along with (for comparison) some isotherms.

19-9 Two moles of an ideal gas expand isothermally at 295K from 0.60m3 to 0.80m3. What would be the
temperature of the gas if the same expansion were adiabatic?

Solution: The temperature is from equation 19-7.

19-10 Air and fuel at 300K and 1.0atm is compressed in an automobile engine with a compression ratio of 8 to
1. Take γ =  1.40 and calculate the final pressure and temperature of the mixture.

Solution: The pressure is from  or

The temperature is from  or



<><><><><><><><><><><><>

19-11 An ideal gas at 3.0 × 105 Pa and 0.080m3 is compressed adiabatically to 0.020m3. What is the final
pressure and the work performed?

Solution: The final pressure is from , or

The work performed is from -W = nCv∆T = nCv(T2 - T1). Substituting from the ideal gas law pV = nRT and R/Cv
= γ-1

Work is performed on the gas in the amount of 4.5 × 104J.

<><><><><><><><><><><><>

19-12 An ideal monatomic gas at pa = 3.0 × 105 N/m2, Va = 0.060m3, and T = 27°C expands adiabatically to pb
= 2.0 × 105 N/m2, Vb = 0.085m3 and then isothermally to Vc = 0.100m3. What is the final temperature, pressure,
and work performed by the gas? Show these paths on a p-V diagram.

Solution: First calculate the temperature at the end of the adiabatic expansion using the ideal gas law

The gas has moved along an adiabat from the 300 K isotherm to the 140K isotherm (point a to point b on Fig.
19-5).

The pressure at the end of the isothermal expansion can be calculated from the ideal gas law with the
temperature a constant, PbVb = PcVc, or

The temperature of the gas at point c is 140K, and the pressure is 1.7 × 105 Pa.

The work performed is positive in both parts of the expansion. During the adiabatic portion of the expansion,
the work is the area under the a-b portion of the curve (see problem 19-11).



Fig. 19-5

In the isothermal portion of the expansion the work is the area under the b-c curve (equation 19-3).

The nRT is equal to pbVb, so

This is the work performed in the isothermal expansion. Along the isotherm pbVb / Tb = pcVc / Tc reduces to
pbVb = pcVc because Tb = Tc.

The total work performed by the gas is 5260J.

Look over this problem again. It is probably the most difficult one you will encounter, and if you understand all
the steps and can do them on your own, you understand the first law of thermodynamics very well.



Chapter 20
Second Law of Thermodynamics

The first law of thermodynamics deals with heat, work, and internal energy. The second law deals with the
direction and efficiencies of thermodynamic processes. Many thermodynamic processes proceed in one
direction but not the reverse. Applying the brakes to stop a car is an excellent example of a thermodynamic
process (the conversion of mechanical energy to heat) that is not reversible.

It is possible to convert mechanical energy into heat with 100% efficiency. It is not possible to convert heat into
mechanical energy with 100% efficiency.

Heat Engines

A heat engine is a device that converts thermal energy to other (usually mechanical or electrical) forms of
energy. The engine takes a working substance through a cycle where heat is absorbed from a hot source and
expelled to a cold source. The cycle may involve taking on or expelling heat, expansion, compression, or a
phase change. Figure 20-1 depicts a heat engine extracting heat from a hot source, performing work, and
expelling heat to the cold source, In this engine the working substance goes through a cycle so that over one
cycle ∆U = 0. In real engines, such as the typical automobile engine, the working substance is the air-fuel
mixture continuously supplied to the engine. In this case the working substance is not physically the same but
has the same characteristics. According to the first law

The thermal efficiency of an engine is defined as the ratio of the work performed to the heat taken in, or

Fig. 20-1

To avoid the confusion of determining the algebraic sign of heat entry or exit of the system, the thermal
efficiency, e, is defined with absolute value signs. According to this definition an engine that converted all the
heat taken in to work would be 100% efficient.

One way of stating the second law of thermodynamics is to say that: A heat engine cannot have an efficiency
of 100%. In terms of the engine, all the heat taken in cannot be converted to work. The first law of
thermodynamics says that we cannot get more energy out of a thermodynamic system than we put in, and the
second law says we cannot hope to break even in extracting energy (mechanical or electrical) from heat.



20-1 What is the efficiency of an engine that takes in 300J and expels 100J over each cycle?

Solution: 

<><><><><><><><><><><><>

20-2 If an (gasoline) automobile engine performs 10kW of work and is 28% efficient, what is the rate at which
heat is taken in and expelled?

Solution: It doesn't matter whether we take the heat in and the work performed for one cycle or the rates for
heat in and work performed. The efficiency is e = W/ QH so the rate of heat in is

From the efficiency equation 20-2,  so the heat expelled is

Carnot Cycle

The Carnot cycle or engine operates in an ideal reversible cycle between two temperatures. Figure 20-2 shows
the two isothermal and two adiabatic paths for the working substance. For the cycle to be reversible the paths
have to be reversible. A reversible path or process is one that can be made to go backwards or forward. The
working substance following these isotherms and adiabats can be taken in either direction by changing the
conditions. For example, along the isotherm from A to B changing the volume slowly (in either direction) will
make the system move up or down the isotherm.

A similar argument holds for the adiabats.

Fig. 20-2

Take an ideal gas as the working substance through a complete cycle.

Path A → B is an isothermal expansion at TH. The gas is placed in contact with a heat reservoir that provides QH

while the gas does work in expanding from VA to VB.



This work according to equation 19-3 is 

Path B → C is an adiabatic expansion.

Path C → D is an isothermal compression at TC. The gas is placed in contact with a heat reservoir that removes
QC while work is done on the gas compressing it from VC to VD.

This work according to equation 19-3 is 

Path D → A is an adiabatic compression.

In this (cyclic) process the working substance has been taken from TH to TC and back to TH. The area bounded by
these four curves is a visual measure of the inefficiency of the Carnot engine.

The efficiency of the Carnot engine is 1 - ¦QC¦/¦QH¦ so form 

The logarithmic part of this expression can be simplified by looking at the adiabatic relations. The adiabatic
processes follow

 and 

Dividing,  or  making 

and ¦QC/QH¦ reduces to TC/TH and the efficiency is

20-3 A steam engine is operated with steam at atmospheric pressure and 100°C. Steam leaves the engine at
slightly above outside temperature, 35°C. What is the efficiency of the engine?

Solution: e = 1 - 308/373 = 0.17 ⇒ 17%

<><><><><><><><><><><><>

20-4 For the situation of problem 20-3 increase the pressure in the boiler so that the temperature of the steam is
450K. What is the efficiency of the engine?

Solution: e = 1 - (308/450) = 0.32 ⇒ 32%



<><><><><><><><><><><><>

20-5 A heat engine takes in 2000J of heat and performs 400J of work each cycle. What is the efficiency, amount
of heat rejected, and the power output for a cycle rate of 100cycles/s?

Solution: The amount of heat rejected in each cycle is 2000J - 400J = 1600J.

The efficiency is

The power output for the engine is

<><><><><><><><><><><><>

20-6 An electric generating plant has an output of 50MW. Steam enters the turbines at 550°C and exits at
110°C. The efficiency of the plant is 80% of the theoretical Carnot efficiency. What is the rate of heat
consumption and heat rejection?

Solution: The Carnot efficiency is e = 1 - TC/TH = 1 - 383K/823K = 0.53

Eighty percent of this is 43% efficiency. This means that 43% of the input is equal to the 50MW output, giving
an input requirement of 116MW. The rate of heat rejection is 57% of the 116MW input or 66MW (rejected).

Refrigerators and Heat Pumps

Refrigerators and heat pumps perform the same function, they supply mechanical energy (work) to an engine
that moves heat from a cold place to a hot place.

A heat pump has as its purpose to heat. The measure of efficiency is called the coefficient of performance and is
the ratio of heat transferred to mechanical work input. Heat engines take in heat in order to perform mechanical
work. Refrigerators and heat pumps take in mechanical energy in order to move heat from a cold to a hot place
(opposite to the normal direction of the process).

Remember that for a Carnot engine W = QH -QC and that QH/QC = TH/TC. For a Carnot engine run as a heat pump
the coefficient of performance is



Fig. 20-3

A refrigerator has as its purpose to cool. The coefficient of performance is

For the Carnot engine run as a refrigerator

20-7 What is the coefficient of performance of a refrigerator operating as a Carnot engine between 5°C and
25°C?

Solution: COPC(refrigerator) = 278/20 = 14

Most refrigerators run at 1/2 or less of their Carnot efficiencies.

<><><><><><><><><><><><>

20-8 Assuming Carnot efficiency calculate the coefficient of performance of a heat pump operating between
20°C and 12°C. Find the minimum power requirements to move thermal energy from the 12°C area to the 20°C
area at the rate of 20kW.

Solution: The coefficient of performance for a heat pump is

The coefficient of performance is the ratio QH/W so QH/W = 37, or



The theoretical minimum power to move the 20kW (from cold to hot) is 0.54kW. Real heat pumps require
about twice this theoretical minimum power. Notice, however, that it takes much less power to “move” heat
than it does to heat directly. In this case about one kW moves 20kW. Heat pumps are most efficient in mild
climates. As the temperature difference increases the coefficient of performance decreases.

Entropy

Entropy is a measure of disorder. Since perfect order or perfect disorder is hard to define, the definition of
entropy is given in terms of the change in entropy. If a system can be taken over a reversible path at constant
temperature then the change in entropy is the heat necessary to traverse this path divided by the temperature,
regardless of the path actually taken

The subscript r is a reminder that the heat transfer is to be measured over a reversible path even though the
system may have been taken over an irreversible path.

20-9 What is the change in entropy for 50kg of water going from liquid to vapor at 100°C?

Solution: The conversion of water from liquid to vapor is reversible, and the heat required is the heat of
vaporization of water (3.3×105J / kg), so

Water vapor has more disorder than water (liquid).

<><><><><><><><><><><><>

20-10 Calculate the change in entropy for 200kg of water slowly heated from 20°C to 80°C.

Solution: The basic definition of entropy is ∆S = ∆Qr / T. The heating process is surely reversible. Switching to
a calculus definition

and integrating over the temperature range

<><><><><><><><><><><><>



Consider the change in entropy during one Carnot cycle. Refer to Fig. 20-2 and the associated discussion of the
cycle. Along the isotherm A → B an amount of heat QH is absorbed at TH. Path B → C is adiabatic as is path D
→ A, so no heat is absorbed or rejected in these paths. Along path C → D an amount of heat QC is expelled at
TC so

Recalling that QC/QH = TC/TH

The total entropy change for one Carnot cycle is zero. This is also true for any reversible cycle.



Chapter 21
Mechanical Waves

Mechanical waves travel in a medium. The medium and the mechanism for producing the wave determine its
properties. There are two types of mechanical waves.

Transverse waves are those where the mechanical motion is perpendicular to the direction of the wave. A wave
snapped on a rope in tension is a transverse wave: pieces of the rope go up and down, and the wave travels
along the rope. Waves on water are transverse: the water goes up and down, and the wave travels along the
surface of the water.

Longitudinal waves are waves in the direction of the motion. An audio loudspeaker creates a varying pressure
wave by physically moving the (column of) air between the speaker and your ear.

Waves move with a speed determined primarily by the medium. Waves also transport energy.

Transverse Waves on a String.

First consider the periodic sinusoidal waves that propagate on a stretched string. If we took a “snapshot” (Fig.
21-1) of the wave we would see a sine wave with amplitude, the maximum displacement from equilibrium, and
wavelength, the length for one complete cycle, or from crest to crest or trough to trough. The velocity of the
wave is the wavelength divided by the time for the wave to pass a point on the string.

Fig. 21-1

This time for the wave to pass a point on the string, or for a piece of the string to execute one sine wave, is
called the period. The reciprocal of the period is called the frequency.

21-1 The end of a stretched rope is being vibrated up and down at 120Hz. A “snapshot” of the wave indicates a
wavelength of 0.50m. What is the speed of the wave?

Solution: The wave has velocity given by ν = λƒ = 0.50m(120Hz) = 60m/s.

<><><><><><><><><><><><>

Take a stretched string being vibrated with an amplitude A at a frequency of 10 Hz, or period 0.10s. In this
discussion do not be concerned with how the stretched string is terminated. The displacement of the end of the
string is



The displacement is a sine function, and sine functions are periodic in 2π, so when t has gone from zero to
0.10s, the time for one period, the oscillation has gone through one (2π) cycle. One In cycle is shown in Fig. 21-
1. Writing the argument of the sine function as 2πƒt is more compact, and replacing 2πƒ by ω is even more
convenient.

From the basic definition of ν = x/t, the time for a wave to move a distance is x/v.

The displacement of a piece of the rope at any distance along the rope and at any time is

The velocity ν is also equal to λƒ so another often convenient form is

In many problems the wave number, k = 2π/λ, is often used and combining with ω = 2 πf

This equation describes the wave on the string at any particular time. It also describes the motion of a piece of
the string at any position on the string. The minus sign is for a wave moving in the positive direction. A plus
sign would be for a wave moving in the negative direction.

21-2 A sinusoidal wave is propagated on a string with amplitude 0.050m, wavelength 0.20m,

and frequency of 40 Hz. Write an expression for the displacement of the string as a function of the time and
position on the string.

Solution: The period of the wave is 1/40 s= 0.025s. The displacement is according to equation 21-2

<><><><><><><><><><><><>

21-3 For the situation described in problem 21-2, what is the expression for the time variation of a point on the
string at x = 0.010m?

Solution: The expression for y with x = 0.10m is



If at t = 0, a wave is initiated from the point x = 0 in the positive direction, then according to this expression, it
takes t =(0.025s)(0.50)= 0.0125s for the wave to reach 0.010m. After this 0.0125s time interval, the point x =
0.010m oscillates in a sinusoidal manner. Look back at the numbers for wavelength and period in problem 21-2
and notice that it takes 1/2 of a period for the wave to travel 1/2 of a wavelength.

<><><><><><><><><><><><>

21-4   For the situation of problem 21-2, what is the expression for the space variation of the wave at t = 0.25s?

Solution:

<><><><><><><><><><><><>

There are two speeds associated with this description of a wave on a string. The speed that the wave moves
along the string is called the phase velocity. This is thevelocity of a crest of the wave as it moves in the positive
direction.

For a wave traveling at constant speed, the displacement must be a constant as a function of space and time, so
sin(ωt-kx) must equal a constant, and therefore ωt-kx must equal a constant. Taking the total derivative of ωt-kx
yields the phase velocity dx/dt.

or

The speed of the wave along the string is the length of the wave divided by the time for one oscillation.

The transverse velocity is the up and down velocity of a piece of the string. This is ∂y/∂t. We use the ∂
notation rather than the d because it is possible to take derivatives of y with respect to both x and t. For a
sinusoidal wave described by equation 21-3



This derivative shows that the up and down motion of a piece of the string is sinusoidal. The maximum velocity
(of a piece of the string) occurs at its equilibrium position, where

cos(ω kx) = 1, and is equal to Aω.

Wave Equation

If the equation for the wave y = Asin(ωt-kx) is differentiated twice with respect to t and twice with respect to x a
very interesting result is obtained:

 and 

Now 27

But ω/k is ν, the velocity, so

which is called the wave equation, a most important equation in physics. Any function of x and t that satisfies
this relation propagates in the positive x direction with velocity v. This analysis is equally valid with
longitudinal waves (sound) with the added complication that y describes the displacement of the particle from
its equilibrium but in the direction of the wave.

Transverse Wave Speed

The speed of a transverse wave on a string depends on the tension and the mass per unit length. Common
experience is that a wave “snapped” on a string moves faster when the string is under greater tension and slower
when a heavier (mass per unit length) string is used.

Look at the crest of the wave as forming part of a circle and follow this crest as it propagates along the string.
Take the arc of the circle as length ∆l and the string of mass per unit length µ. Thus the mass of the length ∆l is
µ∆l. Next look at the forces on thispiece of string. The tension in the string, F, has the components as shown in
Fig. 21-2.



Fig. 21-2

The force, on the piece of string ∆l, directed toward the center of the circle is 2Fsin θ.

At small angles , so 

This center-directed force is the centripetal force 

Set this center-directed force equal to , or

21-5 What is the speed and wavelength of a 20Hz frequency wave on a string of 0.20kg/m under tension of 80
N?

Solution: The velocity of the wave is 

Use  the basic relation ν = λƒ to find 

Power

When a stretched string is displaced (plucked), a pulse travels along the string. There is a force associated with
this displacement. This force acting on an element of the string to produce the displacement and return to
equilibrium is the work performed on the element of string or the energy associated with the pulse. This energy
per time is the power transported along the string.

Fig. 21-3



In a stretched string the tension, or force, has longitudinal and transverse components. The components of the
force are proportional to the slope as shown in Fig. 21-3. The slope is written in the partial derivative notation.
(Remember y is a function of both x and t.)

For small displacements the longitudinal component of the tension is the static tension in the string

(Flong, = F, or small displacements). While the pulse is moving along the string the transverse force is always
opposite the slope of the pulse. The transverse force that moves the pulse is opposite (in sign) to the
displacement.

The power, again from mechanics, is this transverse force times the transverse velocity, or

Take a pulse described by  with 

and  so 

The average value of the cos2 function is 1/2, w=νk, and ν= F/µ, so

21-6 A steel wire of length 1.0m and mass 4.0gm is stretched with a force of 50N. Waves of

amplitude 1.2 x 10-3 m and frequency 1000 Hz are traveling on the wire. What is the average power of these
waves?

Solution: Use the formula

<><><><><><><><><><><><>

21-7 What happens to the power if the frequency is increased by a factor of 10?

Solution: Since the frequency appears in the formula as the square, the power increases by a factor of one
hundred.



Chapter 22
Standing Waves (Strings and Pipes)

A string stretched between two fixed end points appears to vibrate in a sinusoidal manner when plucked.
Blowing across the top of a partially filled bottle of liquid produces a specific frequency sound with the
frequency depending on the length of the air column above the liquid. The wave on the string is transverse. the
elements of the string move up and down while the wave moves back and forth along the string. The wave in
the partially filled bottle is longitudinal: pulses move up and down the column of air in the same direction as the
wave. These two very different waves can be analyzed in a similar fashion.

Waves on Strings

When a stretched string is plucked, the pattern appears as a sinusoidal standing wave. The wave pattern is
sinusoidal because the only solution to the wave equation (previous chapter) is a sinusoidal function. The
wavelength of the waves is determined by the length between the fixed end points of the string. A sine wave on
a string reflected at a fixed boundary produces a standing wave where the fixed length of the string is an
integral number of half wavelengths. Figure 22-1 depicts the sinusoidal standing waves on strings as observed
in laboratory experiments with vibrating strings.

Fig. 22-1

Positions on the string where there is no motion are called nodes and positions where there is maximum motion
are called antinodes or loops. The standing wave on the string is produced by two waves, one moving to the
right

and another moving to the left

both with the same wavelength and period.

The standing wave is the sum of these two waves

Using two identities from the Introduction, Mathematical Background, the sum is

The cos2 πt/T term gives the time dependent motion of a piece of the string at a specific value of x. The
(2A)sin2 πx/λ term is the amplitude of the up and down motion of the piece of the string at the specific value of
x.



Where x is equal to 0 and λ/2, the sin 2 πx/λ term is zero, and the string doesn't move. The allowed wavelengths
are determined by requiring x/λ to equal 1/2, 1, 3/2 …, that is, where the sine function is equal to zero. This
corresponds to x = λ/2, λ, 3λ/2 ….

For a string fixed at end points L distance apart, the allowed wavelengths are then L = nλ/2(n = 1,2,3 …).
Indexing λ for the allowed wavelengths

The allowed frequencies for this stretched string are from v = λf or v = λnfn, so

Remember that for the stretched string, v is a constant equal to . The first frequency (longest
wavelength) is called the fundamental and the next frequency the second harmonic or first overtone with
subsequent frequencies labeled in a similar manner.

When a stringed musical instrument is plucked, all of these allowed frequencies are prevalent though the
overtones are of successively lower amplitude. The difference in sound of stringed instruments plucked at the
same fundamental frequency is due to the design of the instrument to enhance or suppress certain of these
overtones.

22-1 The third harmonic is excited on a 2.4m length of stretched string. What are the positions of the loops and
nodes?

Solution: To produce the third harmonic there are two nodes at 0.80 and 1.6m so as to divide the string into
three segments. The loops are half way between the nodes at 0.40, 1.2, and 2.0m.

Fig. 22-2

<><><><><><><><><><><><>

22-2 An 0.040kg string 0.80m long is stretched and vibrated in a fundamental mode with a frequency of 40 Hz.
What is the speed (of propagation) of the wave and the tension in the string?

Solution: The relationship v = λƒf is used to calculate the speed of the wave. Since the string is vibrating in
fundamental mode, the wavelength is 1.6m (see Fig. 22-1), so



Having determined the velocity from this basic relation, the tension can be determined from . The
linear density of the string is µ = 0.040 kg/0.80m = 0.050 kg/m so

<><><><><><><><><><><><>

22-3 For the situation described in problem 22-2, add that the amplitude (maximum displacement from the
center line of the string) is 2.0mm. What is the displacement at 0.20, 0.40, and 0.60mm, and the time for one of
these oscillations?

Solution: The oscillation is described in both space and time by equation 22-1 at x = 0.20m. The equation is

The sin π/4= 0.71 term specifies the fraction of the 2.0mm (amplitude) of the oscillation at

x = 0.20m. This maximum displacement is 1.4mm. This is the displacement measured from the center line of
the string. The height of the envelope or total (up and down) excursion of the piece of string is 2.8mm.

At x = 0.40mm the sine term becomes sin π/2 = 1 and the total excursion is 4.0mm.

Because of symmetry the maximum excursion at 0.60m is the same as at 0.20m.

The stretched string goes up and down together, that is, all points on the string are vibrating with the same
frequency of 40 Hz, so the time for one oscillation is 1/40s= 0.025s.

<><><><><><><><><><><><>

22-4 One string on a cello is tightened to produce concert A (440 Hz) when the string is not touched (shortened
by placing a finger on it). The length of the vibrating string is 60cm and mass is 2.0gm. How much must the
player shorten the string to play a 660 Hz note?

Solution: The tension (velocity) is adjusted so that the frequency is 440 Hz for a wavelength of 1.2m. The
velocity is

If the tension is not changed, the velocity is not changed so the wavelength to produce 660 Hz is

   or   

The length of the string to produce this frequency is one-half of a wavelength or 40cm. The player needs to
shorten the string by 20cm (from 60cm to 40cm). This is done by pressing the string onto the fingerboard.



Waves in Pipes

If a longitudinal wave is propagated down a gas-filled tube, the wave will be reflected at a closed end in much
the same manner as the wave on a string is reflected at a rigid boundary thereby setting up standing waves in the
tube. Reflection at this end implies no motion and a displacement node. If the end of the pipe is open, then this
end is a displacement antinode. The air is free to move at an open end. Similarly a string with an end free to
vibrate has an antinode at the free end.

The simplest example of a standing wave in a tube is an organ pipe. Air is blown across the open end of the
organ pipe. The opposite end can be closed or open.

Look first at a closed (at one end) pipe. The open end is a loop (displacement antinode)

Fig 22-3

and the closed end a displacement node, so the first fundamental frequency has wavelength 4L (see Fig. 22-3)
The next allowed wave, the second harmonic, as shown in Fig. 22-3, is 4L/3. The general expression for the
wavelengths is

and

Next look at an open (both ends) pipe. Both ends have to be loops (displacement

Fig. 22-4

antinodes), and the simplest situation is shown in Fig. 22-4. The second harmonic is the next simplest situation
(also Fig. 22-4) with the general expression for the wavelength

and frequency



22-5 Standing waves are excited in a 1.0m long pipe open at one end, closed at the other. Take the speed of the
waves as 340 m/s and calculate the frequency for the fundamental and the first harmonic.

Solution: The wavelength is determined by the geometry, so look to Fig. 22-3 where the left diagram shows the
fundamental wave. If the pipe is 1.0m then the wavelength is 4.0m and the frequency is

The next wavelength is shown in the right diagram and requires a π = (4/3) m and

<><><><><><><><><><><><>

22-6 What is the lowest possible frequency of a 5.0m long organ pipe?

Solution: The lowest frequency corresponds to the longest wavelength, and the longest wavelength is for a
closed at one end open at the other pipe (see Figs. 22-3 and 22-4). In this situation the wavelength is 20m
corresponding to a frequency of

This frequency is below what most people can hear.

<><><><><><><><><><><><>

22-7 An open at both ends organ pipe has two successive harmonics of 567 Hz and 850 Hz. What is the length
of the pipe? Take the speed as 340m/s.

Solution: For an open at both ends pipe the wavelengths are given by equation 22-6. For successive harmonics
(n and n +1) two equations can be written in the form v = λf.

   and   

   or   

Refer to Fig. 22-4. These frequencies correspond to the second and third harmonics. The lowest frequency (567
Hz) corresponds to the longest wavelength and using v =λf

The pipe then is 0.60m long.



Chapter 23
Sound.

Longitudinal waves in air is called sound. The simplest physical picture of sound is a thin membrane vibrating
(being driven) sinusoidally with the vibrations being transmitted through the air to another membrane that is set
into sinusoidal motion.

Fig. 23-1

Picture the source as an electrically driven speaker and the detector as your ear that detects the vibrations and
transmits their frequency and intensity to your brain.

If the sending membrane executes one sinusoidal oscillation, a region of high pressure followed by a region of
low pressure, is propagated through the air to the sensor which executes a similar sinusoidal oscillation as the
variations in pressure pass by. (Regions of low pressure are called rarefactions.) Remember that the individual
air molecules or slices of air between source and detector move only about an equilibrium position while the
pressure-rarefaction pulse moves from source to detector.

Take the source as vibrating according to

Remember that y is in the same direction as x, and y represents the displacement of a narrow slice of air while x
represents the motion of the pulse from source to detector. Go over the picture of sound in your mind as a
pressure-rarefaction pulse traveling from source to detector (see Fig. 231) until this last sentence becomes clear
to you. When you understand this statement you have a good physical image of sound.

The pressure maximum is coincident with the maximum rate of change of y with respect to x.

The pressure variation, which is proportional to (∂y / ∂x), is a cosine function. The slope of y versus x is a
maximum (positive) at x = 0, and maximum (negative) at π/2 . Pressure, (∂y / ∂x) is 90° out of phase with
displacement.

The ear is very sensitive to pressure variations, capable of detecting pressures of 10-5 Pa which is 10-10 of an
atmosphere!

23-1 At some arbitrary position x graph displacement and pressure as a function of time on the same axis and
explain the relationship.

Solution:



Fig. 23-2

Pick a point x where the displacement versus time is a sine curve (equation 23-1). The pressure curve (equation
23-2) is a cosine curve. Maximum pressure occurs when y is moving to the right with maximum speed. This
corresponds to maximum positive slope or the point t = 0 on the graph. Minimum pressure (a rarefaction)
occurs 180° later where the slope of y versus t has its largest negative value.

Intensity and the Inverse Square Law

Sound waves transport energy. Most sound sources radiate spherically symmetric patterns while most detectors
intercept only a certain portion (solid angle) of the radiated energy. Therefore in sound measurements it is
convenient to specify intensity, the power per unit area, rather than total power.

The power transmitted by a wave on a string is proportional to the square of the amplitude. With techniques
similar to those used to determine the power transmitted by a wave on a string, the intensity of a sound wave is

where p is the density of air.

For a source of sound, the total power is the intensity times the spherical area corresponding to the point (at a
radius out from the source) where the intensity is measured.

23-2 What is the total power output of a source with intensity 0.050W/m2 at a distance of 3.0m from the source?

Solution: The total power is the intensity times the area of the sphere with radius 3.0m.

Fig. 23-3

<><><><><><><><><><><><>



23-3 What is the intensity of a 4.0W source at 2.0m?

Solution: The power is P = 4 π2 I so 

<><><><><><><><><><><><>

Consider a spherically symmetric source and intensity measurements on two different concentric spheres. The
total power is the same so the power collected over one sphere is the same as the power collected over any other
sphere. In equation form this statement is

leading to

which is the inverse square law.

23-4 If the intensity from a source is 4.0 × 10-3 W/m2 at 12m, what will the intensity be at 4.0m?

Solution: Assume a spherically symmetric radiator and equate the powers at the two radii.

P1 = P2 requires 

Be careful on problems like this that you don't get the ratio upside down. Develop the habit of checking for the
obvious. When you get closer to a source the intensity increases and vice versa.

<><><><><><><><><><><><>

23-5 How far away can a 50 W tornado siren be heard? Assume the minimum detectable intensity is 5.0 × 10-6

W/m2

Solution: The power is P = 4π2 I so 

The Decibel



The human ear is responsive to sound intensities over a wide dynamic range, 1010 or more in intensity levels. A
person's perception of “loudness” is that increasing intensity by a factor of 10 approximately doubles the
perceived “loudness.” This property of the human ear suggests that sound intensity, or level, should be
measured with a logarithmic scale. The logarithmic decibel scale for measuring loudness is defined as

where Io = 1.0 × 10-12 W/m2 is the approximate threshold for human hearing.

23-6 Most people experience pain at sound levels above 100dB. What is the intensity associated with 100dB?

Solution: Equation 23-6 needs to be solved for I, and this requires switching from a logarithmic to an
exponential equation. See the Introduction, Mathematical Background for a review of logarithmic and
exponential equations.

First write β/10=log(I/Io) and remember that x=logy has the solution y=10x. The use of “log” implies base 10.

Switch from a logarithmic equation to an exponential one and write I/Io = 10β/10.

For β = 100, 

Practice switching logarithmic equations to exponential equations and vice versa and solving for the various
variables. This is not a common algebraic operation, and you need sufficient practice to develop proficiency
with exponents and logarithms.

<><><><><><><><><><><><>

23-7 What is the dB loss when you double your distance from a spherically symmetric constantoutput power
source?

Solution: Since the source is constant power output and spherically symmetric the inverse square law applies.
Take r1 and r2 = 2r1 and apply power equals power.

 and 

The dB levels at r1 and r2 are

 and 

and the difference is

Doubling the distance from the source results in a 6.0 dB loss.

The Doppler Effect



The Doppler effect is the apparent increase or decrease in frequency of a source when the source and observer
are moving toward or away from one other.

Fig. 23-4

First consider a stationary source and a moving observer. In Fig. 23-4 pressure pulses are depicted as equally
spaced and moving radially out from the source. An observer at rest would observe vt/λ waves passing in a time
t (vt is the length of the collection of waves or “wave train” traveling from source to observer and λ is the
wavelength, so the quotient is the number of waves). The number of waves divided by the time is the frequency
f = vt/µt resulting in v = µf.

If the observer is moving toward the source with a velocity vo he will intercept vot/µ more waves, and the
apparent frequency is

If the observer is moving away from the source, the sign of vot/µ is negative. The apparent frequency then
corresponds to the negative sign in equation (23-8).

23-8 What is the apparent frequency of a siren emitting a 300 Hz sinusoidal signal that you are approaching at
30m/s?

Solution: Use equation 23-8 with the plus sign because you are approaching the source and intercepting more
waves than if you were stationary.

<><><><><><><><><><><><>

23-9 What is the apparent frequency of the siren in problem 23-8 after you have passed it and are moving away?

Solution: When you are moving away the frequency is lower because you are intercepting fewer wave fronts
than if you were stationary so use the minus sign in equation 23-7.

<><><><><><><><><><><><>

Now consider a moving source and a stationary observer. Figure 23-5 depicts the pressure pulses as packed
closer together in the direction the source is moving. This effectively shortens the wavelength to a stationary
observer.



Fig. 23-5

The effective wavelength is λ'= (v - vs)/f, and the apparent frequency is

For a source moving away from an observer the effective wavelength is (v + vs)/f, so combining

The two expressions for source and observer moving (equations 23-7 and 23-8) can be combined

The way to keep the signs straight is to remember that on approach the frequency is increased and on departure
the frequency is decreased.

23-10 A railroad train traveling at 30m/s emits a note at 400 Hz. What frequency is heard by an observer a) on
the train, b) standing beside the track, and c) on another train approaching at 35m/s?

Solution: a) On the train the observer hears the 400 Hz.

b) Beside the track with the train approaching the observer hears a higher frequency

And with the train moving away the observer hears a lower frequency



c) On the other train the observer hears a higher frequency due to the source approaching, (v - vs) term, and
observer approaching, (v + vo) term.

<><><><><><><><><><><><>

23-11 Submarines use 1000 Hz signals to avoid collisions. A submarine traveling at 5.0 m/s observes another
submarine on the same course behind it and detects the collision avoidance signal from this submarine at
1005Hz. What is the speed of the other submarine? The velocity of sound in water is 1500m/s.

Solution: This is a Doppler effect problem with both source and observer moving. The hard part of the
problem is getting the signs correct. First note that the frequency is higher than emitted so the submarines are
closing. If the observer were stationary the formula would be

f'=f[v/(v - vs)]. If the observer were moving away from a stationary source the formula would be f'= f[(v - vo)/v].

So combining, the correct formula is 

and putting in the numbers  or vs=12m/s.



Chapter 24
Charge and Coulomb's Law

Coulomb's law is the basic force relationship between two charges. This force acts along the line connecting
the charges and is repulsive for like charges and attractive for unlike charges.

where εo = 8.9 × 10-12 C2/Nm2 , and 

The proportionality constant can, for the moment, be thought of as a constant that makes the force Newtons
when the charges are measured in Coulombs and the separation in meters.

24-1 Two charges, q1= 3.0×10-8C and q2 = -4.0×10-8 C, are separated by 6.0×10-3 m as shown in Fig 24-1. What
is the force of one on the other?

Solution:

Fig. 24-1

This is the force each charge experiences due to the other. The fact that q1 is positive and q2 is negative means
that the force is directed from one to the other along the line joining their centers.

<><><><><><><><><><><><>

24-2 Consider a line of charges, q1 = 8.0µC at the origin, q2 = -12µC at 2.0 cm, and q3 = 10µC at 4.0cm, as
shown in Fig. 24-2. What is the force on q3 due to the other two charges?

Solution: The force on q3 due to q1 is repulsive as shown in Fig. 24-2. The magnitude of F31 is



Fig. 24-2

It is not necessary to be overly concerned about the sign of the force. The vector makes the direction clear.
Drawing a vector diagram is a more sure way of getting the final direction correct than using algebraic signs in
the force calculations.

The force on q3 due to q2 is attractive, and the magnitude is

The resultant force is 2250N toward q1 and q2.

<><><><><><><><><><><><>

24-3 Arrange three charges in the form of an equilateral triangle as shown in Fig. 24-3 and find the force on q3

due to the other two.

Fig. 24-3

Solution: This is a more complicated vector problem. First calculate the force on q3 due to q1 and then due to
q2. Adding these vector forces is called superposition. The forces can be added as vectors as long as the force
due to one charge does not affect the force due to another charge. In this case the force on q3 due to q1 does not
influence the force on q3 due to q2.

The force on q3 due to q1 is

and is directed as shown in Fig. 24-3. Likewise the force on q3 due to q2 is



and is directed as shown. Referring to Fig. 24-3, the x and y components of the resultant force can be written.
The x-component of these two forces is

The y-component of these two forces is

Second Solution: Using unit vector notation the forces are written as

and combine to             

Rather than worry about the algebraic signs of angles other than 0° to 90° draw the picture and keep the angles
under 90°. This way it is easy to “see” the sign of the various components. Most mistakes in problems like this
are algebraic sign mistakes. The way to avoid these mistakes is to draw and label a vector diagram, more than
one if necessary.

As an exercise find the magnitude and direction of the resultant.

<><><><><><><><><><><><>

A classic charge problem is one where charged balls are hung by strings from a common point with the question
being how far apart the balls separate for a given equal charge.

24-4 Consider two conducting balls both of mass m and equal charge q suspended by nonconducting cords of
equal length, l as shown in Fig 24-4. How does the separation of the balls depend on charge, mass, and length?

Fig. 24-4



Solution: The arrangement is shown in the accompanying drawing along with the vector diagram. This is a
force balance problem. The mechanical force is due to gravity and is directed down. The electrical force is the
Coulomb force and is directed along the line of centers of the conducting balls, which for this geometry is
horizontal.

On the vector diagram the mg force is balanced by the vertical component of the tension in the cord, or T
cosθ=mg. The horizontal component of the tension is T sinθ, and replacing T with mg/cosθ the horizontal
component is

But tanθ can be written in terms of the geometry as  and 

The horizontal component of the tension in the cord is balanced by the Coulomb force of

repulsion                   

or                          

<><><><><><><><><><><><>

24-5 What is the force of attraction between sodium and chlorine ions in salt molecules if each ion carries one
electronic charge and the separation is 2.8 × 10-10 m?

Solution:      



Chapter 25
The Electric Field

The electric field is defined as the force per unit charge E = F/qo and as such is a vector. Electric fields can be
superposed - added as vectors. The units of the electric field are N/C or Volt/meter. In terms of charges the
electric field has magnitude

and direction, the direction of a unit positive charge placed at r.

Discrete Charges

A classic problem that illustrates the vector nature of electric fields is the calculation of the E field on the axis
of a dipole.

25-1 An electric dipole is depicted as equal and opposite charges separated by a distance 2a as shown in Fig.
25-1. Find the electric field at a distance r along the bisector of the center line of the charges.

Fig. 25-1

Solution: First draw the diagram and note the direction of the electric field vectors. The horizontal components
of E1 and E2 add to zero. The vertical component is made up of two vectors of equal magnitude, E1cosθ. The
magnitude of the vertical vector is 2E1cosθ.

From the geometry,  and  so

This is the magnitude of the electric vector. The direction of the vector is down or parallel to a line drawn from
+q to -q. If r is large compared to a (often the case) then

and for large distances the field falls off as 1/r3. The product 2aq is called the dipole moment p = 2aq. It is
interesting to note that for a point charge the E field is radial (in or out) and falls off as 1/r2 while for the dipole
E is tangential to the radius and falls off as 1/r3.



<><><><><><><><><><><><>

25-2 Calculate the electric field due to two charges, q1 = 4.0 × 10-6C and q2 = -3.0 × 10-6C, separated by 3.0 m
and at a point 3.0 m opposite q2 as shown in Fig. 25-2.

Fig. 25-2

Solution: The electric field due to the first charge is

The electric field due to the second charge is

The direction of the fields due to these two charges is shown on the diagram. The vectors are written in
component form

with resultant ER = (1.4 × 103i+-1.6 ×103j)N/C

As an exercise verify that in number plus angle form this vector is .

<><><><><><><><><><><><>

25-3 Find an expression for the electric field due to a collection of charges of equal magnitude all placed in a
line and separated by a distance d. The charges have alternate signs, and the field to be calculated is the field on
a line normal to the line of charges and opposite the central positive charge. Additionally, look for approximate
expressions for long distances away from the line of charges.



Fig. 25-3

Solution: The electric fields are labeled to correspond with the charges. The fields at a point r distance away
from the line of charge are:

Look at the geometry associated with E2 and notice that this vector can be written in terms of a horizontal and a
vertical component. The vector E4 also has vertical and horizontal components.

The vertical components of E2 and E4 add to zero while the horizontal components add along r. The same is true
of vectors E3 and E5. The horizontal component of E2 is E2 times the cosine of the angle θ, thus the contribution
of E2 and E4 is two times the magnitude of E2 times the cosine of the angle θ

E2 and E4 contribute  pointed in along r.

Similarly E3 and E5 contribute  also pointed out along r

Combining the contributions from all the charges

If r is comparable to d then this formula is appropriate. However if r is large compared to d, then the r terms
predominate in the denominators and the expression is approximately

This formula shows that at long distances the array looks like one positive charge.



Linear Charge.

So far we have looked at the electric fields that result from discrete charges. If the charges are spread out, such
as over a surface, then the definition of electric field has to be modified to a calculus definition where the
contribution of each element of charge to the total field is summed.

25-4 A problem that illustrates this is the calculation of the electric field on the axis of a ring of positive charge.
Set up the problem as shown in Fig. 25-4.

Solution: Each element of charge dq produces an element of electric field dE at a point on the bisector of a
diameter of the ring. This dE has components dE cosθ along the direction of the bisector and dE sin θ
perpendicular to the bisector. An element of dq at one spot on the ring produces dE sin θ, and across the
diameter of the ring a similar element (of dq) produces a dE sin θ component that cancels this one. Because of
this symmetry the dE sin θ components add to zero.

Fig. 25-4

The magnitude of the electric field due to each element of charge can be written as

but it is dE cosθ which ultimately produces the field pointing outward from the center of the ring.

From the geometry , so the differential electric field component is

This expression can be summed (integrated) without the need for formal integration. The left side is just the
total electric field, the sum of the dE cosθ contributions. The right side is the sum of all the elements of dq,
which is just q, so



Notice that at x = 0, E = 0, as it should and that for , again as it should. Far away the ring
of charge should look like a point.

Surface Charge

25-5 Calculate the electric field vertically out from a uniformly charged disk of radius R and charge density
(charge/area) σ.

Solution: The calculus definition of the electric field is that each element of charge produces an element of
electric field according to equation 25-4 where r is the distance from the element to the point where dE is
calculated. Because of the symmetry of the problem the dE is produced by a dq in the form of a ring of charge
of radius r and width dr. Refer to Fig. 25-5 and note that the dE produced by this ring of charge is a cone with
horizontal components adding to zero. A piece of the ring producing a piece of dE has a corresponding piece
across a diameter. The horizontal components of these corresponding pieces add to zero. The vertical

component is dE cosθ with cosθ determined from the geometry as  Summing the
contributions over r produces the electric field pointing away (and perpendicular to) the charged disk. The
differential element of charge is dq = (2πrdr)σ (2πrdr is the differential element of area), thus

Fig. 25-5

Remember the integral is over r and not x. Make a change of variable with u = x2 + r2 and du = 2rdr. The
integral transforms according to

Changing the sign and switching the limits



When R is large compared to x, the bracket approaches one and the electric field is 

Applications

25-6 Consider an electron ballistics problem where an electron is projected between two plates (as shown in
Fig. 25-6) at an initial velocity of 6.0 × 106 m/s and angle of 45°. The electric field is 2.0 × 103N/C and directed
up. The length of the plates is 10 cm and separation 2.0 cm. Will the electron strike the plates? And if so,
where?

Fig. 25-6

Solution: This is a projectile problem. Look through Chapter 4, Projectile Motion, and refresh your memory on
the general approach to projectile motion problems before continuing with this problem. The electronic charge
and mass are given on the constants page.

First calculate the acceleration. The force on the electron comes from the electric field, F = eE, and this force
makes the electron accelerate leading to a = eE/m. Using the values for e and m for the electron

The electric field is directed up, which would be the direction of acceleration of a positive charge. For the
negatively charged electron the acceleration is down. Using this logic argument to determine the direction of the
acceleration is easier than carrying minus signs throughout the problem.

The most convenient origin for the coordinate system is the edge of the plate where the initial velocity and
direction are known with x positive to the right and y positive up. Now write the six equations describing the
motion.



To determine if the electron hits the upper plate, set y = 2.0 × 10-2 m and solve for t. Without units

and

The smallest time is taken as this corresponds to the electron striking the top plate. If the solution for t had
contained an imaginary number, this would have indicated that the electron would never reach the top plate.

Now with this time calculate the position in x where the electron strikes the plate.

Another way to solve the problem is to go back to the six equations describing the motion and solve for y as a
function of x. First solve the x equation for t and substitute this expression for t into the y equation to obtain

When y = 0.020 this equation becomes 10x2 -x + 0.020 = 0 with solution

Here again be sure to take the value of x corresponding to the smallest positive time.

Dipoles

A dipole placed in an electric field experiences a torque. The dipole moment, defined earlier as p = 2aq, can be
expanded to define the dipole moment vector of magnitude 2aq pointing from -q to +q. The force on each
charge is qE, and they add to zero so the dipole does not translate.



Fig. 25-7

It does, however, rotate due to the torque of magnitude 2aF sin θ. When θ= 0 and the dipole is lined up with
the field, the torque is zero. But when θ= 90° the torque is 2aF. Multiply the torque by q/q to obtain

which is a cross product, or

25-7 A dipole with charge 6.0 × 10-6C and separation 4.0 × 10-3 m is immersed in an E-field of 3.0 × 106N/C.
Calculate the maximum torque.

Solution: 

<><><><><><><><><><><><>

If a dipole is subjected to an E-field and the dipole is rotated by that electric field, then work is done on the
dipole. The work done by the field must be

Be careful with the signs and angles.

25-8 Take the original position θ0 = 70°, and the final position θ1 = 20° and calculate the work performed on the
dipole and the energy stored in the system.

Solution:           

The electric field has done 0.086J of work on the dipole, and this is the amount of energy stored in the dipole-
field system.



Chapter 26
Gauss' Law

Gauss' law can be tricky. The concepts expressed in mathematical terms often imply considerable mathematical
sophistication to work the problems. This is almost always not the case. In general; if you are involved in
excessive mathematical manipulations you are doing the problem wrong or do not see an easy way to apply
Gauss' law. Remember that Gauss' law represents the density of flux lines through an area. Remember also that
most of the difficult looking integrals never occur.

Start with a definition of flux as

This states that the flux is the sum of the vector (dot) product of electric field over a surface times the area. E
represents the electric field, and ds is a vector normal to the surface representing a differential element of
surface. The dot product is the component of E parallel to ds, that is, normal to the surface, times ds. If E is a
constant (most often the case) then the sum of (integral

of) E.ds over the surface is the component of E normal to the surface area, times the total surface area.

26-1 Calculate the flux through a square plate 1.0m on a side inclined at 120° with respect to a constant electric
field of 100N/C. You may at this point want to review the definition of dot product in Chapter 1, Vectors, and
the concept of the integral in the Introduction, Mathematical Background.

Fig. 26-1

Solution: The surface area ds is represented by a vector normal to the surface. The vector product E.ds is
Eds(cos30°). Integrating this product

This represents the flux through the surface.

<><><><><><><><><><><><>

The construct (concept) “flux” can be thought of as a collection of lines intercepting this square plate. If the
electric field is increased, then there are more “flux lines” per square meter and, if the angle is changed, more or
less flux lines are intercepted as the angle is changed.

This integral of a vector product that sounds like a very difficult problem is performed rather easily with an
understanding of dot products and integrals.



Electric field lines are a convenient concept or construct to help us visualize the electric field. The electric field
lines are envisioned as vectors going from positive charges to negative charges, the direction a unit positive
charge would move. The electric field lines between two oppositely charged plates are just lines going from one
plate to another. Higher fields would be envisioned as more lines or more lines per cross-sectional area.

In the case of a sphere surrounding a unit positive charge the field lines would be pointing radially out, the
direction a unit positive charge would move. On spheres with different radii the electric field would be
different; the field line density (number per square meter) would be different. However if we could sum all the
electric field lines over the different spheres we would find the same number of lines. Their number density
would decrease as the radii were increased but the total number over a sphere would remain the same.

The formal Gauss' law connects flux to the charge contained again via an integral

The charge q is the net charge enclosed by the integral. The εo can, for the moment, be thought of as a constant
that makes the units come out right.

Place a charge q at the center of a sphere and apply Gauss' law 

Fig. 26-2

The little circle on the integral sign serves as a reminder to integrate over an enclosed surface. The sphere we
are integrating over in this instance, not a physical sphere, is known as a Gaussian surface  - a surface where the
integral is taken when applying Gauss' law. Now E is a constant over the surface (symmetry) so the integral
becomes

 and  is just the surface area of the sphere or

   and                  (26-3)

which is just the statement we have from Coulomb's law and the definition of the electric field.

26-2 The electric field at the surface of the earth is approximately 150N/C directed down. Calculate the sign and
magnitude of the charge on the earth.

Solution: Gauss' law states that  E.ds = q enclosed



Construct a spherical Gaussian surface just outside the physical surface of the earth where E is everywhere
normal and of value 150N/C. The integral of E.ds is the sum of this field over the Gaussian surface. E and ds
are 180° so their dot product is negative.

Fig. 26-3

The field pointing down indicates that the charge is negative as does the dot product being negative. Again
notice that this integral over the Gaussian surface is quite easy. These past two problems are very illustrative of
the “integration by inspection” approach to problems involving Gauss' law.

<><><><><><><><><><><><>

26-3 Calculate the sign and magnitude of the charge contained in a cube 10 cm on a side oriented as shown
where the E-field is given by

Fig. 26-4

Solution: First calculate the E-fields entering and exiting the cube. Watch the algebraic signs carefully.

There is more flux leaving the cube than there is entering it, so the net charge inside the cube must be positive.
On the left side E is to the right and the vector representing ds is to the left, so



Remember that the direction of ds is always outward from the enclosed volume. On the right side E is to the
right and the vector representing ds is to the right so

The integrals over y and z are zero and the integrals over x add to 1.05 Nm2/C. Now q can be calculated

<><><><><><><><><><><><>

26-4 The total charge (charge density) contained in an electron stream can be calculated with Gauss' law. If the
field at the edges of a stream of square cross section 1.0cm on a side is

1.0 × 103 N/C, calculate the charge density in the stream. Assume that the E-field in the direction of the stream
is constant.

Fig. 26-5

Solution: The field is directed in, so the charge is negative and  reduces to calculating four

identical integrals. 

The charge in a cube 1.0 cm on a side is now

The charge density is

For the electron charge density we need to introduce the charge of the electron.



<><><><><><><><><><><><>

26-5 A planetary probe is traveling radially inward toward the center of the planet. At 600 m above the surface
the field is directed up and has value 180 N/C. At 500 m it is still directed up but has value 125 N/C. Find the
sign and density of the charge (density) in this region.

Solution: The radius of the planet is sufficiently large so that we can take the region as a cube 100 m on a side.
The electric fields are as shown in Fig. 26-6. Gauss' law can be written as

Fig. 26-6

The electric field at the sides is zero. At the top, the electric field and the vector representing ds point in the
same direction so the dot product has a plus sign. On the bottom, the electric field vector points up while the
vector representing ds points down giving the dot product a minus sign. Putting in the values for the integrals.

the total charge enclosed within the volume is

The charge density then is 4.9 × 10-12 C/m3.

<><><><><><><><><><><><>

26-6 Calculate the electric field between cylinders carrying charges as shown. The +q is on the inner conductor
and -q on the inside of the outer conductor with another -q on the outside of the outer conductor.



Solution: On a surface between the conductors,  applies to the charge contained

and  with 2πrl the surface area of the Gaussian cylinder, corresponding to the point where
the field is required, so in this region E points inward and has value E=q/2πεorl.

Note that the electric field at a point between the cylinders is only due to the charge enclosed by the Gaussian
surface. Because of the symmetry of the problem, the charge on the outer cylinder produces no net electric field
at any point inside the outer cylinder.

Fig. 26-7

Outside the outer cylinder the E field points inward because the net charge contained is negative, and at any
point r (outside the outer cylinder) measured from the center line of the two cylinders E=q/2πεorl.

With this particular arrangement of charge, the field has the same algebraic form between the cylinders and
outside the outer cylinder but points outward between the cylinders and inward outside the outer cylinder.

 



Chapter 27
Electric Potential

In mechanics the use of force to analyze problems works well when the force is a constant. When the force
depends on position, then the concepts of work and energy are introduced with work defined as the summation,
or integral, of force over distance.

In electricity, potential is introduced for similar reasons. While the electric field is a constant in many problems,
it is not a constant, say, in the vicinity of a point charge except on a sphere surrounding that (central) charge.
Any motion of charges due to electric force that is not on the surface of the sphere surrounding a central charge
has to take account of this non-constancy of the field, or force (field is force per charge).

The electric potential or potential difference between two points A and B is defined as the work per unit
charge necessary to move the unit charge from A to B

The units of potential are Joule/Coulomb or volt. Usually one point (A) is taken at infinity where VA=0. This is
convenient and correct since the force on the unit charge at infinity (see Coulomb's law) is zero.

Look at the integral (same definition of work as in mechanics) involved in calculating WAB for a charge qo being
brought from infinity to the vicinity of q. This integral is

Fig. 27-1

Be careful of the signs here; If q and qo are positive, the force is repulsive; and if qo is coming from infinity to
rB, then F.dr is negative. With this definition the potential, or work per unit charge, at any point r radially out
from q is

a most convenient definition.

For a constant electric field, such as between two parallel plates, WAB=Fd=qoEd and VB-VA=WAB/qo=Ed, where d
is the distance moved (in the direction of the field).

27-1 In a certain experiment an electric field of 2.0×105 N/C is required for parallel plates separated by
0.0020m. What voltage will produce this field?

Solution: For a constant field, V = Ed so



<><><><><><><><><><><><>

27-2 An electron placed between two charged parallel plates separated by 2.0×10-2m is observed to accelerate at
5.0×1014m/s2. What is the voltage on the plates?

Solution: First calculate the force on the electron as

The electric field required to move this electron is

The voltage for this separation is

<><><><><><><><><><><><>

27-3 What is the electric potential 0.20m away from a charge of 1.0 × 10-6C?

Solution: 

27-4 Calculate the electric potential for the same charge but at 0.50m away.

Solution: 

The potential difference between these two positions is 2.7 × 104V

<><><><><><><><><><><><>

27-5 Use the situation (charge and potential calculations) of problems 27-3 and 27-4. If a charge of 5.0×10-6C
were moved from a radius of 0.50m to a radius of 0.20m, how much work would be performed?

Solution: The work performed is the potential difference in Joule/Coulomb (or volt) times the charge in
Coulomb (observe the units carefully).

The work is independent of the path between these radii. This is the great value of potential calculations.



<><><><><><><><><><><><>

27-6 A 5.0g conducting sphere with charge of 20 µC hangs by a non-conducting thread in an electric field
produced by two plates separated by 8.0cm. What potential will cause the ball to hang at 25° to the vertical?

Fig. 27-2

Solution: This is a force-balance problem, the electric force is balanced by the horizontal component of the
tension in the thread. Refer to Fig. 27-2 and write the force statements.

Divide one by the other to arrive at

The potential is from E = V/d or V = Ed

<><><><><><><><><><><><>

27-7 Calculate the electric potential of a spherical (conducting) shell of radius 0.10m carrying a charge of
5.0×10-4C.

Solution: In calculating the potential on the spherical shell the charge acts as if it were at the center of the
sphere.

<><><><><><><><><><><><>

27-8 Now calculate the electric field just outside this surface.



Solution: 

As an exercise show that the unit V/m is equal to N/C.

<><><><><><><><><><><><>

The electric potential due to an array of charges can be calculated by superposing the solutions for each charge.
Because the electric potential is not a vector this is usually an easy calculation.

27-9 For the array shown in Fig. 27-3 calculate the potential mid-way between q1 and q2.

Solution: First calculate the distance from this midpoint to q3

Fig. 27-3

The potential at the point P is the sum of the contributions from each of the charges.

if a is measured in meters.

<><><><><><><><><><><><>

27-10 Calculate the electric potential along the x-axis for the triangular array of charges shown.



Fig. 27-4

Solution: 

for  which is what we would expect.

A long way away from the collection of charges the collection looks like one positive charge.
A classic problem is the calculation of the potential at a point a distance r and at an angle θ from the center of a
dipole. The potential is written by summing the potential from the two charges and using the approximate
trigonometric relation between r, r1, and r2.

Fig. 27-5

If r>>a then r1r2 ≈ r2 and also θ1 ≈ θ2 ≈  so r2-r1 ≈ 2a cosθ and using the dipole definition p=2aq

27-11 The water molecule H2O has an asymmetric charge distribution leading to a dipole moment p of 6.2×10-

30C.m. Calculate the electric potential 1.0nm a) at right angles to the direction of the dipole moment and b) at
45° to the direction of the dipole moment. (1.0 nm is approximately 10 hydrogen atom diameters)



Fig. 27-6

Solution: The approximate expression for the electric potential is 

and the electric potentials at Pa and Pb are

ccap

27-12 A positron (positively charged electron) traveling at 3.0×107 m/s is projected directly at a stationary
proton. What is the distance of closest approach?

Solution: The positron will approach the proton until the energy of the positron is expended in doing work
against the Coulomb repulsive force. The positron will stop, then exit the vicinity of the proton having a
velocity profile on exit the same as, but in the opposite direction, to the entrance.

This work is set equal to the kinetic energy  and solved for

This is a very close approach being two orders of magnitude smaller than the distance from the nucleus to the
first electron orbit radius in the hydrogen atom.

Second Solution: This problem can be done using the concept of the electron-volt (eV) unit of energy. An
electron accelerated through one volt has an amount of work performed on it equal to one volt (the work per
unit charge) times the charge on the electron.



This equation defines the Joule-eV equivalence. An electron accelerated through a potential difference of one
volt is said to gain one electron volt in energy. An electron accelerated through 1000 volts would gain 1000 eV
in energy. An alpha particle (two positive electronic charges) accelerated through 1000 volts would gain 2000
eV in energy.

In this particular problem the positron with a velocity of 3.0 × 107 m/s has a kinetic energy of

This means that the positron has been accelerated through 2600 V.

A positron with this energy could approach a proton to a radius equivalent to 2600 volt potential.

Set  equal to 2600V and solve for rc

<><><><><><><><><><><><>

Another application of the concept of potential is to calculate the amount of work required to place charges in
an array.

27-13 Calculate the work required to arrange the charges as shown in Fig. 27-7. In this problem the subscripts
on the q's represent the position of the charges

Fig. 27-7

Solution: To make this calculation place q0 in position (corresponding to the origin of a coordinate system) and
calculate the work necessary to place q1 in position. This is

Since the charges are opposite, the electric force is attractive and the work to put this charge in position is
negative (this charge has to be restrained as it approaches q0). Now with these charges in place, add -2q2 with an
amount of work



There are two components to this work calculation, the work to bring -2q2 to within  of -q0 and the work to
bring -2q2 to within a of +q1. Adding the third charge means taking into account the three charges already in
place

The total work is the sum of these, or

ccap

27-14 Another classic problem has to do with the calculation of the electric potential due to charge on a surface
along a line from the center of a disk and perpendicular to the disk.

Fig. 27-8

Solution: The potential is

In this problem dq will have to be written in terms of charge per unit area times (differential) area. Start by
writing the differential voltage in terms of the differential element of charge, dq, or

The charge on the surface is assumed uniform with surface charge density σ (charge per unit area). Take the
charge contained in the circular strip, σ(2πy)dy (2 πy is the length of the strip and dy is the width). The r is

, so the contribution of this strip to the electric potential is

The integration is to be performed in y from zero to b, the radius of the disk



Make a change of variable. Let u = a2 + y2 and du = 2ydy so the integral becomes (and we look at the integral
only without the limits)

This integral is in the Introduction, Mathematical
Background.

Therefore 

Now look at the limiting case where b/a <<1, which is often the case. This is most conveniently done by first
rewriting the expression in brackets as

and then writing the square root as a binomial expansion remembering that b/a <<1. The binomial expansion
(see the Introduction, Mathematical Background for the binomial expansion) is

This is expected since σπb2 is the total charge and a is the distance from that charge. A long way away a disk of
charge “looks like” a point charge. The use of the binomial expansion is helpful in two ways. First, it allows a
convenient calculation for the situation where b/a <<1; and second, the limiting case reduces to the simple
expression for the potential due to a point charge, in effect verifying the calculation.



Chapter 28
Capacitance

A capacitor is a geometric arrangement of conducting plates where charge can be stored. The capacitance is a
measure of the charge that can be stored per volt. The unit of capacitance, the farad, is defined as a
Coulomb/Volt. The defining equation

for capacitance is C =q/V.

The simplest capacitor is two parallel plates of area A and separation d.

Fig. 28-1

The capacitance of a parallel plate capacitor determines the amount of charge that can be stored on the plates. A
battery connected to the plates will place charge on the plates. For this discussion the battery can be viewed as a
source of charge (or charge pump) with the amount of charge delivered to the plates determined by the voltage
of the battery. Remember that the voltage of the battery is a measure of the amount of work that can be
performed on a unit of charge.

When the battery is connected to the plates, we say that positive charge begins to flow onto the positive plate
and negative charge onto the negative plate. The first “piece of charge” distributes uniformly over the plate. The
positive and negative charges arrange themselves on the plates opposite one another. As more charge is pumped
onto the plates the work necessary to place each new “piece of charge” on the plate increases because of the
mutual repulsion of the charges already on the plate. Thus the capacity of the device to store charge is directly
proportional to the plate area.

The limitation on capacity imposed by the mutual repulsion of like charges on one plate is offset by opposite
charges on the other plate. As the distance between the plates is reduced, the attraction between unlike charges
makes it easier, in terms of work performed by the battery, to place charge on the plates and the capacity of the
device is increased. Thus capacitance is inversely proportional to the separation of the plates.

The capacitance of a parallel plate capacitor is directly proportional to the plate area and inversely proportional
to the separation, with a constant added to make the units work out correctly.

This very simple view of a parallel plate capacitor produces the correct functional relationship as seen in the
formal derivation in the following paragraph.

The formal procedure for determining capacitance is to:



1) calculate E using Gauss' law, then

2) calculate V from  and finally

3) calculate C from the definition

For the parallel plate capacitor, charge the plates with a battery so that one plate contains positive charge and
the other negative charge. The charges will arrange themselves so they are on the insides of the plates opposite
one other (unlike charges attract). Construct a Gaussian surface surrounding one plate. The E-field exists only
between the plates and is constant over the Gaussian surface. Applying Gauss' law

E is a constant over the Gaussian surface so the integral ofE over this surface is just E times A, the surface area.
This is another case of an integral that can be evaluated by looking at it and writing down the answer. In this
geometry the relationship between voltage and field is simple, V=Ed, so εoVA/d =q and the capacitance, which
is defined as

The capacitance is entirely geometry dependent. One thing to notice here is εo, which can be expressed in the
new units of Farad/meter or F/m.

28-1  A capacitor with circular plates of 0.20m radius separated by 0.0010m is connected to a 100V battery.
After a long time the battery is disconnected. What is the charge stored on the plates?

Solution: The capacitance of the arrangement is

The charge is obtained from the definition of capacitance, equation 28-1

<><><><><><><><><><><><>

28-2 Calculate the capacitance of a cylindrical capacitor of inner radius a, outer radius b, and length l.

Solution: Set up a cylindrical Gaussian surface symmetrical about the inner cylinder and of length l.



Fig. 28-2

E is constant over this surface and  so that 

Continuing with the procedure, calculate V.

and by definition , so 

<><><><><><><><><><><><>

28-3 Calculate the capacitance of a spherical capacitor with inner radius a and outer radius b.

Fig.28-3

Solution: Set up the Gaussian surface symmetric about the inner sphere. E is a constant over this surface and

 or εoE(4πr2) = q, so 

Now calculate V from



and by definition  so 

Capacitors as Lumped Circuit Elements.

Capacitors are used in electric circuits, so it is necessary to know how capacitors add when used in series and
parallel. First look at three capacitors placed in series.

Fig.28-4

The applied voltage is distributed between the three capacitors so V=V1+V2+V3. Since there is no way to add
charge except to the end plates, those connected directly to the battery, then the charge contained within the
Gaussian surface must total zero.

The right plate of C1 has equal but opposite charge to the left plate of C2. Another Gaussian surface surrounding
C1 also must have total charge zero, so the charge on the plates of C1 are equal and opposite. Proceeding in this
manner the magnitude of the charge on all the plates is the same. Rewriting the equation for the voltage using
the definition of capacitance

Therefore  can be replaced by an equivalent capacitance 

Capacitors placed in series add in a reciprocal manner.

Capacitors placed in parallel add linearly. Look at the expression for C for a parallel plate capacitor: C = εoA/d.
Adding another parallel capacitor just adds more εoA/d to the capacitor. Therefore, capacitors placed in parallel
add linearly.



28-4 A 6.0 µF capacitor and an 8.0 µF capacitor are connected in series. A potential of 200V is placed across
them. Find the charge and potential on each.

Fig. 28-5

Solution: The circuit is as shown. Since the capacitors are in series the charge on each capacitor is the same.
The equivalent capacitance is found from

so the equivalent capacitance is (24/7) µF, and the equivalent circuit is as shown.

The charge is easily calculated from q = CV = (24/7) µF. 200 V = 686 µC. The voltage on each capacitor is

These voltages add to the 200V applied to the combination.

<><><><><><><><><><><><>

NOTE: This general approach of reducing circuits to simpler equivalents by applying the rules for lumped
circuit elements is at the heart of circuit analysis.

28-5 A 12 µF capacitor and a 10 µF capacitor are connected in parallel across a 100V battery. Find the charge
and potential on each capacitor.

Fig. 28-6

Solution: The circuit is as shown. The voltage across each capacitor is the same, 100 V. The charge, however,
depends on the capacitance.

Look at the equivalence. Take this total charge and the applied voltage and find an equivalent capacitance.



This is the sum of the capacitances as expected in a parallel arrangement.

28-6  The analysis of multiple capacitor combinations is done with (sometimes several) equivalent circuits.
Consider the circuit shown that has parallel and series combinations.

Fig. 28-7

Solution: The first equivalent circuit comes from the combination of C1 and C2.

Now combine C3 and C4 to C5=C3+C4 =4.4 µF + 6.0 µF = 10.4 µF allowing construction of the final (simplest)
equivalent circuit

Fig. 28-8

Now calculate the total charge qt = C5V = 10.4 µF.300 V=3.1 × 10-3 C.

The charge on C3 is q3 =C3V = 6.0µF.300 V= 1.8 × 10-3 C.

The remaining charge is 1.3 ×10-3 C, and this is the charge on each of the other capacitors, C1 and C2. Remember
that the charge on capacitors in series is the same. The voltage on each of these capacitors is

The error here of these voltages not adding up to 300V is about 2%, which is expected from round off.

28-7 Charge a 12µF capacitor with a 200V source, then place this capacitor in parallel with an uncharged 7.0µF
capacitor and calculate the “new” voltage.

Fig. 28-9



Solution: The 12 µF capacitor initially placed on the 200V source has a charge of

When connected to the 7.0µF capacitor the charge distributes so that the total charge remains the same and the
“new” voltages are equal as they must be for capacitors in parallel. Take Q as the amount of charge that moves
from the 12µF capacitor to the 7.0µF capacitor. The voltages as expressed by the ratio of q to C must be equal,
so write

The voltage on each of the capacitors is

Energy Storage

If the potential of a capacitor is defined as the work required to move an amount of charge from one plate to the
other, then in differential form

and the integral of this expression to find the total work to move an amount of charge q is

This work is equal to the energy stored in the capacitor, U. Another quantity of interest is the energy that can be
stored per unit volume.  For a parallel plate capacitor, where C =εoA/d

28-8 Go back to the previous problem of the 12µF capacitor charged to 200V and then connected to the 7.0µF
capacitor and look at the question of energy.

Solution: The 12µF capacitor at 200V has a stored energy of

NOTE: The units of energy are [FV2]=[(C/V)(J/C)2]=[J].

After the capacitors are connected, the voltage drops to 126V and the energy stored in the two capacitors is



Where did the energy go? The difference between the 0.24J and the 0.15J is the kinetic energy needed to
transport the charge or the work to move the charge.

Capacitors and Dielectrics

Dielectrics are most conveniently thought of as materials containing dipoles that are “loose” and can line up
with an applied electric field. The easiest way to understand dielectrics is to approach them experimentally.
Using a parallel plate capacitor as a model observe experimentally that the amount of charge per unit voltage
increases with the insertion of various dielectric materials. The easiest way to explain this is to

say that C = εoA/d is changed by a factor kgr;, so C = κεoA/d with this κ called the dielectric constant, a
measure of the amount by which the capacity of a capacitor is increased due to a particular dielectric.

The mechanism of increasing the capacitance can be thought of as the dipoles lining up across the separation d
with the positive end of the string effectively neutralizing some of the negative charge on the plate and the
negative end of the string doing the same to the other plate. The effect of these positive charges in the vicinity
of the negative plate allows the negative plate to be negatively charged more easily (with less work) leading to a
greater capacity of the device in the presence of the dielectric.

Fig. 28-10

Consider another experiment with dielectrics.  Connect a battery in parallel with identical sized parallel plate
capacitors except one has a dielectric and the other does not. For the one without the dielectric C = εoA/d. And
for the one with the dielectric C=κεoA/d. Since q=CV, to carry the same charge the capacitor with the dielectric
would have to have V reduced to Vo/κ and likewise E to Eo/κ. Finally looking at the energy density for
capacitors with dielectrics

28-9 A parallel plate capacitor of 2.0 × 10-9 F and plate area 0.50 m2 is connected to 3000V. Calculate the stored
energy.

Solution: 

<><><><><><><><><><><><>



28-10 The plates (problem 28-8) are physically pulled apart to double the original separation. Calculate the
work performed by the outside agent pulling the plates apart, the average force exerted on the plates, and the
average power if the separation occurs over 10s.

Solution: First, calculate the original separation from

Substituting the expression for the capacitance of a parallel plate capacitor the total energy is

If the separation is doubled the energy is halved. The energy density is reduced by one-quarter. (Refer to
equation 28-9.) In this case the energy is reduced from 90 ×10-4 J to 45 × 10-4 J. This 45×10-4 J energy loss must
be the amount of work done in separating the plates. The work is force times distance, so the average force
would be

If this work were done over 10 seconds the power would be



Chapter 29
Conductivity

Electric conductivity is most conveniently thought of as motion by essentially “free” electrons; electrons not
bound to atoms. The actual mechanism is more complicated but this simple view is sufficient to understand
conductivity in metals. In the absence of an electric field, these free electrons are moving in random patterns
with a mean free speed v. They regularly crash into ion cores (metal ions with the conduction electron(s)
missing), then move off again with this same mean free speed.

Electric conduction comes about because an electric field is impressed on the metal which slightly modifies this
random motion of the electrons giving them a drift velocity in the direction opposite to the field. The
accompanying diagram shows the effect of an electric field (dashed lines) on the random motion of a
conduction electron in a metal subject to an electric field.

Fig. 29-1

The mean free speed is the speed of the electrons as determined by the temperature of the metal, and the drift
velocity is due to the electric field. This drift velocity is small compared to the mean free speed. The motion of
the electron charge carriers is characterized by the drift-velocity, the mean free path (the distance between
collisions), and the relaxation time (the time between collisions). The drift velocity depends on the applied
field. The mean free path and the relaxation time are characteristics of the metal and the physical condition of
the metal (temperature, pressure, etc.).

Current

Consider a wire, containing charge, under the influence of an electric field. On a plane through the wire
(perpendicular to the charge motion) an amount of charge will pass per unit of time. This is called the current

with unit of ampere = coulomb/second or A = C/s.

Fig. 29-2

The current density is defined as the current per cross-sectional area.

The current direction is direction a unit positive charge would move in the field. Despite the charge being
carried by electrons, current is viewed as the motion of positive charge. This definition fits with the previous
work in potential.



29-1 A current of 5.0 A exists in a wire of 0.50cm diameter. Calculate the current density.

Solution: 

<><><><><><><><><><><><>

29-2 Calculate the amount of charge that passes a cross section each second.

Solution: 5.0 A = 5.0C/s, so 5.0C passes a cross second each second.

<><><><><><><><><><><><>

29-3 Calculate the number of electrons per second.

Solut ion: 

Notice that a current on the order of 10-15 A would amount to 104 electrons per second.

<><><><><><><><><><><><>

29-4 What is the current and current density in a 1.2cm diameter gas discharge tube if 3.0×1017 electrons and
2.0×1016 positive ions pass a cross section of the tube each second?

Solution: The current is due to electrons going one way and positive ions going the other way.

The current density is 

The amount of charge in a length of wire is the product of number density of charge carriers (number/volume),
cross-sectional area, and length (the volume), and the charge per carrier, or

In the presence of an electric field the time for this charge to traverse the length, l, of this volume is the length
divided by the drift velocity, t=l/vd. The current is the charge contained in the volume divided by the time for
the charges to move the length of the volume. The current is

and the current density is



29-5 A metal conductor with 2.0×1025 charge carriers/m3 and cross-sectional area 1.0×10-4 m2 has a current of
4.0×10-2 A. What is the drift velocity of the charge carriers?

Solution: 

Resistance

The resistance of a conductor is defined as the voltage divided by the current, R = V/i and has a special unit,
the ohm = volt/amp, or in symbol form Ω = V/A. The resistivity of a material is defined as the electric field
divided by the current density

which gives resistivity the units of Ω.m. The resistivity of most metals is the order of 10-8 Ω.m.

The instantaneous relationship between voltage, current, and resistance is

and is known as Ohm's law. Many metals over a wide range of voltage and current obey Ohm's law.

29-6 The resistivity of copper is 1.7×10-8 Ω.m. What current flows through a 2.0m long copper conductor of
1.0×10-4 m2 cross section when 20V is applied?

Solution: First calculate the resistance: 

Now the current: 

<><><><><><><><><><><><>

The “free” charge carriers in a conductor experience an electric field when a voltage is applied and this field
produces an acceleration a = eE/m, the electric force divided by the mass. The charge carriers accelerate until
they crash into an ion core, then the process of accelerate and crash begins again. The characteristic time
between collisions, which is dictated by the mean free speed, is called the relaxation time. The acceleration
times the relaxation time produces the drift velocity.

This expression for resistivity is consistent with Ohm's law. Resistance (and resistivity) is a constant provided
the applied field does not change the time between collisions. Remember, the time between collisions is a
property of the material and is not appreciably affected by the applied electric field.



29-7 Take a rectangular block of metal 1.0×10-4 m2 in cross section, 50cm in length with a relaxation time of
3.0×10-14s. Apply 4.0V for a current of 3.0A. Calculate resistivity, electrons/sec. passing a cross section, current
density, the acceleration of the electrons, and the drift velocity.

Solution: The resistivity is 

The number of e-/s passing a cross section is 

Calculate the current density. 

Calculate the acceleration of the electrons. 

Calculate the drift velocity. vd = aτ=(1.4 × 1012 m/s2)(3.0×10-14 s) = 4.2 × 10-2 m/s

NOTE: The mean free speed, the speed of the electrons before the application of the field, is the order of 106

m/s .

Power

In electric circuits, energy is transferred when charge moves under the influence of voltage. Since voltage is
work/charge, then the energy involved in moving an amount of charge under the influence of voltage is the
voltage times the charge. In differential form

Power (work/time) dU/dt is P = Vi

In a circuit where V, i, and R are related by V = iR this power can be written

In the case of electrons passing through a metal this energy is manifest as heat in the conductor. The energy
transfer is known as Joule's law of heating. The units are VA = (J/C)(C/s) = J/s= W.

29-8 A 1000W electric heater operates at 115V. Calculate the current, resistance, and energy generated in one
hour.

Solution: The current in the heater is 

The resistance is 



The energy generated in one hour is U = Pt = (1000J/s) (3600s) = 3.6×106 J.

29-9 For the situation of problem 29-8, if the voltage is reduced to 110V (assume no change in resistance) how
does the heat output change?

Solution: This is best handled with a variational equation. In this case start with P = V2/R and ask how does P
change with V, while R remains constant. The left side becomes ∆P, and the right side becomes (1/R) times the
differential of V2. Writing in delta format

The 2V∆V is the difference between (V + ∆V)2 and V2.

The ∆V2 term is dropped because it is small compared with 2V∆V. For this case them

What is the fractional change in power output, ∆ P/P?

NOTE: The fractional change is the change divided by the original amount.

There is an 8.7% decline in power for a 4.35% decline in voltage.

Temperature Dependence of Resistivity.

The resistance or resistivity of a metal depends on temperature according to

where α is the temperature coefficient of resistance. This increase in resistance is consistent with our view of
electric conductivity as charge carriers moving under the influence of an electric field until they crash into much
larger ion cores.

As a metal is heated, energy goes into vibration of the ion cores. Charge carriers moving through the metal have
a greater chance of intercepting an ion core as the amplitude of the oscillations increases. More collisions means
greater resistance.



As an analog, consider the problem of walking blindfolded across a room with all the same size people standing
in a random pattern in the room. The number of times you collide with another person depends on the relative
cross sections (areas) of you and the people standing in the room. If the people are put into oscillation,
perpendicular to your direction of motion, the probability of collision becomes greater. In the time it takes for
you to move past each person, they move, increasing the probability of collision. They have a greater effective
cross section, with respect to your walking across the room, because of their motion.

29-10 Calculate the resistance of an iron bar when the temperature is raised from 0°C to 100°C.

The initial resistance is 1.43Ω, and the temperature coefficient of resistivity is 0.00501/C°.

Solution: 

Batteries and emf

Batteries can be viewed (loosely) as charge pumps. Work is performed on charge as it moves through the
battery effectively raising its potential (energy). This potential energy is expended when a path (circuit) is
provided for the charge to travel outside the battery. The ability of the battery to do work on the charge passing
through it is called the electromotive force (emf). The electromotive force is measured in volts. A 10 volt
battery can perform 10 Joules of work on each coulomb of charge passing through it and is said to have an emf
of 10 V.

A battery connected to a load with resistance, R, causes current to flow in the load according to the V = iR
relation. For an amount of charge flowing through the load, the drop in potential (voltage) is the same as the
gain in potential (voltage) in the battery. This is a conservation of energy statement: the charge does not go
faster and faster as it moves around the circuit; neither does it go slower and slower; it moves at a rate dictated
by V = iR.

Real batteries have internal resistance. Batteries viewed as charge pumps have resistance associated with
moving the charge through the battery. The no load (no current) voltage at the terminals of the battery is the emf
of the battery. As current is supplied by the battery, the internal resistance lowers the voltage at the terminals. In
circuits, batteries are usually depicted as a voltage source in series with a resistor.

29-11 A battery with an emf of 10 V has internal resistance of 0.70Ω. What is the voltage at the terminals of the
battery when 1.0 A is being drawn by an external load?

Fig. 29-3

Solution: The voltage drop inside the battery is i ri = 1.0A .0.70Ω = 0.70V, so the output voltage is reduced to
9.30 V.

<><><><><><><><><><><><>

When batteries with internal resistance are connected to external loads, the battery plus internal resistance is
usually shown enclosed either by a dashed line or shading and the emf specified by the symbol emf.



29-12 A battery of 12 V emf has internal resistance of 0.50Ω and is connected to a 6.0Ω load. What is the
terminal voltage of the battery under these conditions and the power dissipated in the external resistor?

Solution: The total current comes from emf = i(ri + R) or 

At this current the voltage drop due to the internal resistor is 1.85A.0.50Ω = 0.92 V, so the output voltage or
voltage applied to the 6.0Ω resistor is 11.08V.

Fig. 29-4

The power dissipated in the external resistor is P=Vi=11.08V.1.85A = 20.5W.



Chapter 30
Resistors in D.C. Circuits

In this chapter we will look first at series and parallel resistors, then at how series and parallel combinations are
analyzed by writing successively simpler equivalent circuits.

Series Resistors

Take three resistors in series as shown in Fig. 30-1.

Fig. 30-1

If a voltage, V, is applied to this combination the current through each resistor is the same. The voltage
statement for each of the resistors is V1 = IR1, V2 = IR2, V3 = IR3. The individual voltages across each resistor
must add to the total so V = V1 + V2 + V3 = I(R1 + R2 + R3). The equivalent resistor for this combination is R = R1

+ R2 + R3. Resistors in series add linearly.

30-1 What is the equivalent resistance of 3.0 Ω and 4.0 Ω resistors placed in series? What is the current in each
resistor if 10 V is applied to the combination?

Solution: The equivalent resistance is Req = 3.0Ω+4.0Ω=7.0Ω. The current is the same in each resistor and has
value I = V/Req = 10 V/7.0 Ω = 1.4 A.

Parallel Resistors

Place three resistors in parallel as shown in Fig. 30-2. If a voltage is applied to this combination, the voltage
across each resistor is this applied voltage and the currents are determined by V = I1R1, V = I2R2, and V = I3R3.
These currents must add up to the total current delivered to the combination.

Fig. 30-2

An equivalent resistor (for this combination) then would have the form

Resistors in parallel add reciprocally.



30-2 What is the current in each resistor for a parallel combination of 3.0 Ω, 3.5 Ω, and 4.0 Ω resistors with
8.0V?

Fig. 30-3

Solution: 

The total current delivered by the power source is I = 2.7A + 2.3A + 2.0A = 7.0A. Now check the total by using
the equivalence

Using the equivalent resistance (1.15Ω) the total current is I = V/Req = 8.0 V/1.15Ω = 7.0A.

Series-Parallel Combinations

30-3 Calculate the equivalent resistance of the series-parallel combination shown in Fig. 30-4.

Fig. 30-4

Solution: The first step in this circuit analysis is to find the equivalent of the parallel combination.

The circuit then becomes two series resistors and they add to a single resistor.

NOTE: The equivalent resistance of any two resistors is lower than either of the two alone.

Fig. 30-5



<><><><><><><><><><><><>

30-4 Apply 20 V across this network and find the voltage across and current through each resistor.

Solution: In order to find the current in a resistor in the original network, it is necessary to work back through
the equivalent circuits. Start with the last circuit. Apply 20V to a 14.5Ω resistor for a current of I = V/R = 20
V/14.5Ω = 1.4 A. Working backwards, this current through R1 produces a voltage across this resistor of
V1=(1.4A)R1=(1.4A)(8.0Ω)=11V. This current passes through the equivalent resistor R4 producing a voltage
across it of V4=(1.4A)R4=(1.4 A)(6.5Ω) = 9.1 V. V1 and V4 add to 20 V, the total applied, to within round off
error range. The 1.4A divides between R2 and R3. The voltage across R2 and R3 is V4 = 9.1 V so

Again this total adds to 1.4A, within round off error. This analysis produces the voltage across and current
through each resistor in the network. The numbers are internally consistent (the currents through R2 and R3 add
up to the current through their equivalence) giving confidence in the calculation.

<><><><><><><><><><><><>

30-5 In the circuit of Fig. 30-6 calculate the voltage across, current through, and power requirements of the
8.0Ω resistor when 15V is applied to the network.

Fig. 30-6

Solution: The first step in the analysis is to find the equivalent of R2 and R3.

A similar analysis on R4 and R5 yields

Now the equivalent can be drawn.



Fig. 30-7

The parallel combination of R6 and R7 produces another equivalent.

Fig. 30-8

The total current is I =V/R9 = 15V/6.1Ω=2.46A.

This current through the 2.1Ω resistor produces V8=(2.46A)R8=(2.46A)(2.1Ω)=5.16V.

Look back through the equivalent circuits and notice that this voltage is across R8, R6, and R2.

The current through R2 then is I2=V8/R2=V2/R2=5.16V/8.0Ω=0.64A.

The power dissipated in this resistor is I2R=(0.64A)2(8.0Ω)=3.3W.

<><><><><><><><><><><><>

The general procedure for circuit analysis is to look at the circuit and find parts of it that can be replaced with
simpler equivalents and just keep applying the process until the circuit is reduced to one resistor, perform V =
IR on that resistor, and move back through the equivalents to obtain the desired information.



Chapter 31
Kirchoff's Laws

Kirchhoff's laws applied to circuits containing multiple branches, voltage sources, and resistors allow
calculation of currents in each branch of the circuit. Start with a very simple circuit consisting of a battery and
resistor. The battery polarity is taken as indicated with positive charge

Fig. 31-1

leaving the positive plate. The current is as indicated by the arrow. An amount of charge or current over time
starting at the negative plate of the battery is viewed as gaining energy in passing through the battery and losing
this same amount of energy in the resistor. The equation for this circuit is shown in Fig. 31-1.

Kirchhoff Voltage Loop Equations.

The V - IR equation for this simple circuit illustrates the first Kirchhoff law: The algebraic sum of the changes
in potential (energy) encountered in a complete traverse of a path is zero. This is analogous to a conservation of
energy statement.

The only difficulty in applying Kirchhoff's laws is keeping the algebraic signs correct. When confused, go back
to this simple diagram of a battery and resistor and the current flowing (in the external circuit) from the positive
side of the battery through the resistor to the negative side of the battery. Write the V - IR = 0 statement
establishing that when a battery is traversed in a positive direction, there is a gain in energy giving V a plus
sign; and when a resistor is traversed in the direction of the current arrow, there is a loss in energy giving IR a
negative sign. Every Kirchhoff law problem you do should have this little circuit drawn in a corner of the paper
to remind you of the algebraic signs and their importance.

Think of a “piece of charge” traversing the circuit gaining energy as it passes through the battery and losing
energy as it passes through the resistor. In this simple circuit the direction of the current is clear. In multiple
branch circuits it is not possible to “guess” the correct directions for the currents. Make the best educated guess
that you can and let the mathematics tell you whether the currents are positive or negative.



 

Fig. 31-2

Consider the three branch circuit of Fig. 31-2. Make your best estimate of the current direction for each resistor
and draw and label the current arrows. It is not necessary to have the direction correct, it is only necessary to be
consistent in applying the sign convention. Now make two loops around this circuit, one around the left and
one around the right as indicated by the closed loops. Remember, when traversing a battery from minus to
positive write +V and when traversing the resistor in the direction of the current arrow write -IR. Around the
first loop

In traversing this loop start at the low, or negative, side of the 6V battery and proceed around the loop:

6 is positive

4I1 is negative because the resistor is traversed in the direction of the current arrow.

3I2 is positive because the resistor is traversed in the direction opposite to the current arrow.

7 is negative because the battery is traversed from plus to minus.

Around the second loop

Rewrite these two equations

Writing the equations this way illustrates very clearly that they cannot be solved. In mathematical language
they are two equations in three unknowns. The third equation necessary to solve for the three currents comes
from the next Kirchhoff law.

Kirchhoff Current Junction Equations

The second Kirchhoff law deals with the currents: the sum of the currents to any junction must add to zero.
This law is often forgotten. It is, however, easily remembered via a whimsical law called the “fat wire law.” The
fat wire law is very simple. The sum of the currents to any junction must equal zero, otherwise the wire will get
fat. Applying this second Kirchhoff law to the junction just above the 3Ω resistor



Now we have three independent equations in three unknowns.

NOTE: For convenience in the discussion, individual equations in a set of equations will be designated by
letter symbols. The number of significant figures used in the calculations will be kept to a minimum so as not to
obscure the mathematical procedure with numbers. Likewise, units will not be used. Several techniques for
solving multiple equations in multiple unknowns will be presented. It is not necessary to know all these
techniques. Pick a technique that you feel comfortable with and learn it well.

At this point you may be asking why we did not take another loop to obtain a third equation. Taking another
loop in the circuit will only serve to generate another equation which is a linear combination of the first two
loop equations. Take a loop around the outside of the circuit and write:

This equation is just the difference of the first two loop equations and is not a linearly independent third
equation. Therefore it cannot be used to solve for the three currents. As an exercise take a figure eight path
around the circuit and prove that this statement is also a linear combination of the first two loop equations.

Solving by Adding and Subtracting

Now to the solution of these three equations. The most popular and direct approach is to add and subtract
equations to produce two equations in two unknowns and then further add and subtract to solve for one current
and work backwards to find all the currents.
 

1
4I1+4I2+4I3=0

add (b) -4I1+3I2   

=1

to obtain
(α)

7I2-
4I3=1

Combine equation (α) with 2/3 of equation (c) and write (α) and (β)

Place I2 = 1/3 into (c).             3(1/3)+6I3=3  or   I3 = 1/3

Now place I2 = 1/3 and I3 = 1/3 into (a).        I1+(1/3)-(1/3)=0 or I1=0

Check these current values in each of the original equations to verify that they are correct.



Solving by Determinants

Another method of solving these equations is with determinants. Using determinants to solve three equations in
three unknowns is explained in the Introduction, Mathematical Background. Your calculator may have an
algorithm for solving simultaneous equations using determinants (sometimes called Cramer's rule), so this may
be your method of choice.

Going back to the equations marked (a), (b), (c) set up the master determinant and expand along the first
column. Equation (c) is divided by 3 to reduce the numbers.

The determinant for I1 is expanded along the top row

The value of 

The determinant for I2 is expanded about the top row

The value for 

As an exercise set up the determinant for I3, expand along the top row, and verify the value of I3 obtained
previously.

Solving by Augmented Matrix

A third method of solving three equations in three unknowns is with an augmented matrix. Many calculators
that have internal programs for solving simultaneous equations require data to be input in a manner similar to
the augmented matrix form. The manipulations of the augmented matrix are similar to adding and subtracting
equations to find a solution. Before applying this method to the equations for this problem look at a general set
of three equations in three unknowns.

If the first equation were multiplied by -(k/a) and added to the third equation these three equations would read



What this accomplishes is to make the coefficient of x zero in the third equation. Now multiply the first
equation by -k/e and add to the second equation making the coefficient of x zero in the second equation. After
this, the second equation can be multiplied by a constant and added to the third equation with the constant
chosen so as to make the coefficient of y in the third equation zero. Once this is accomplished the solutions are
easily written down. The procedure is better illustrated with a specific case, the previous problem. These
equations already have some coefficients equal to zero making the process easier. This is usually the case with
Kirchhoff law analysis

Multiply the first equation by 4 and add to the second equation generating a new second equation.

This makes the coefficient of I1 equal to zero in the second and third equation producing two equations in two
unknowns. Now multiply the second equation by -1/7 and add to the third equation generating a new third
equation.

Now solve directly with I3=1/3. Substituting this into the second equation I2=1/3. Putting these two values into
the first equation obtains I1=0.

The augmented matrix method uses the coefficients from the equations. The adding and subtracting of equations
to generate other equations is done by multiplying and adding different rows of the matrix just as if they were
equations. As we go through the process imagine that the operations are being performed on equations.
Working with the coefficients arranged in an orderly array is easier. Working the matrix so as to produce zeros
starting in the lower left hand corner and then moving diagonally across the matrix is easier than working the
equations. Start with



There is already a zero in the lower left corner so we need to create a zero in the -4 position. Multiply the first
row by 4 and add to the second row generating a new second row. This is equivalent to multiplying the first
equation by 4 and adding it to the second equation generating a new second equation, which is a linear
combination of the first two. This is exactly what is done in solving simultaneous equations by adding and
subtracting.

Now multiply the third row by -7 and add to the second row generating a new third row.

Now go back to the equations where 18I3 = 6 or I3=1/3.

Put I3=1/3 into 7I2-4I3=1 to obtain I2=1/3.

Put I2=1/3 and I3=1/3 to obtain I1=0.

These methods of solving multiple equations in multiple unknowns require considerable number manipulation
with the attendant chance for error. The augmented matrix method has the least number manipulation while
adding and subtracting may be more familiar to you. All of the techniques work. Pick the one that fits you, and
the set of equations you are solving, best and proceed carefully.

Applications

The procedure for solving Kirchhoffs laws problems is the following:

1. Draw the battery and resistor circuit in the corner of your paper to remind you of the sign convention.

2. Place current arrows next to each resistor and label them.

3. Pick a junction and write the current statement.

4. Draw loops and write the loop equations.

5. Solve for the currents and check them in the original equations.

31-1 Solve for the current in each of the resistors in the circuit shown in Fig. 31-3.

Fig. 31-3



Solution: Follow the procedure for Kirchhoff problems. This is a subject that is conceptually easy but because
of the large number of manipulations often hard to actually do. Work this problem as you are following along in
the book. Draw the circuit and begin.

Draw the single battery and single resistor with current arrow and V - IR=0 equation.

Place and label the current arrows.

Write the statement of the “fat wire law” for the top center of the circuit.

Write a loop statement for the left side of the circuit.

Write a loop statement for the right side of the circuit.

Now write these three equations in a convenient form for solution.

As an exercise solve these equations and verify that the solutions are I1 = 17/47 = 0.36, I2=24/47 = 0.51, and
I3=7/47=0.15. Check these answers in the original equations.

31-2 Consider a more complicated problem as shown in Fig. 31-4 and calculate the currents in the resistors.

Fig. 31-4

Solution: Draw the battery and resistor circuit and V - IR equation to remind you of the algebraic sign
convention.

Note the current arrows. Remember that if one of the currents comes out negative it means only that the current
is opposite to the direction of your arrow.



Apply the “fat wire law” to the line across the top of the three resistors.

The loop around the top branch of the circuit is 6-8I1=0.

A loop around the lower left branch is 10-10I4-5I3-3=0.

A loop around the lower right branch is 3+5I3+6I2-6=0.

Rewrite the equations in convenient form for solving.

Immediately I1=3/4=0.75. Work the problem and verify that the other currents are I2=-0.20, I3=0.84, and I4=0.28.

31-3 Calculate the currents in the resistors of the circuit shown in Fig. 31-5.

Fig. 31-5

Solution: Draw the battery and resistor circuit and V - IR equation to remind you of the algebraic sign
convention. Apply the “fat wire law” to the line across the top of the circuit.

The loop around the left branch is 4 - 6I1 - 3I2 + 2 - 4I2 = 0.

The middle loop is 4I2 - 2 + 3I2 - 8I3 = 0.

The loop around the right branch is -3 + 5I4 + 8I3 = 0.

Rewriting the equations in convenient form for solving



Work the problem and verify that the currents are I1=0.41, I2=0.51, I3=0.19, and I4=0.29.

Hint: First solve for I3 using determinants, then the rest of the currents by algebra.



Chapter 32
R-C Circuits

Our first look at R-C circuits is with a simple word description of the charging phenomenon. The circuit shown
in Fig. 32-1 is appropriate for the study of charging and discharging. After giving a general description of how
the circuit works, we will take a closer look at the mathematical description. Throughout the discussion, unless
the context and notation indicate otherwise, lower case letters mean time varying quantities and upper case
letters constants. For example, q is the symbol for time varying charge on the capacitor while Q is the total
charge.

Fig. 32-1

Charging.

Assume the capacitor has zero charge and voltage, and place the switch (S) in the charging position (up). When
the battery voltage is applied to the R and C in series, current begins to flow. Current through the resistor causes
a voltage drop across the resistor. Because of this voltage drop, less than the battery voltage is applied to the
capacitor. As current flows, the capacitor charges and less and less current flows until there is no current, no
voltage across the resistor and the capacitor is charged to the battery voltage (Q=CV).

The charge on the capacitor increases with time starting with zero charge and eventually reaching maximum
charge of CV following an exponential function.

This function fits our understanding of how the circuit operates since when t = 0, q is zero, and when t is very
large, q=CV, the capacitor is totally charged.

The voltage on the capacitor is

Here the notation VC denotes the time varying voltage on the capacitor.

The current in the circuit declines exponentially according to i=(V/R)e-t/RC

With this description of the operation of the charging circuit, we can proceed to a more detailed (mathematical)
analysis of the charging situation.



When the battery voltage is applied to R and C, voltages across these components vary with time. We can,
however, write a Kirchhoff-type voltage statement that is correct for the entire time the circuit is charging. This
is called an instantaneous voltage statement; it is true at any instant of time. Following Kirchhoff's law

This equation can be integrated with a change of variable. Replace q-CV with x so dq = dx.

Then  The integral of the left side is In(x)=In(q-CV), so

Choosing the constant as InK1 is very convenient, allowing further simplification.

Notice that the logarithm equation goes into an exponential equation. This is not an every day mathematical
operation. Review the Introduction, Mathematical Background, and be sure you understand how to go from a
logarithmic equation to an exponential one. Rewrite the equation

and apply the condition that at t=0, q=0, or 0 = CV + K1, or K1 = -CV, so finally

Obtaining this expression for q looks easy, and it is if you remember to choose the constant for convenience in
solving the equation, remember how to switch from a logarithmic equation to an exponential equation, and
apply the initial conditions correctly.

The voltage across the capacitor is

The current in the resistor is

The voltage across the resistor is



Two graphs are particularly helpful in understanding the situation; one of q versus t, and the other of i versus t.

Fig. 32-2

Notice in the curve of q versus t, that at t = 0, q = 0, and as t → ∞, q → CV.

In the curve of i versus t, at t=0, i=V/R, and as t → ∞, i → 0.

At t = 0, the charge on the capacitor is zero and the current is maximum; and as t goes to infinity, the current
goes to zero and the charge reaches its maximum of CV.

The Time Constant

In biological systems that grow exponentially the systems are often characterized by giving the doubling time,
the time for the system to double in number, size, or mass. In electrical systems that grow exponentially the
systems are characterized by a time constant, the time to make the exponent of e equal to 1. The time constant
for this circuit is RC (see equation 32-1). As an exercise verify that the units of RC are seconds.

Look at equation 32-1 and the q versus t graph. When t=RC, 1-e-1=0.63 and the charge on the capacitor has
risen to 0.63 of its final value. A similar statement can be made about the voltage on the capacitor. After one
time constant, the voltage on the capacitor is 0.63 of the battery voltage.

The current, meanwhile, has in one time constant dropped to e-1 = 0.37 of its initial value.

32-1 A 10kΩ resistor and a 20µF capacitor are placed in series with a 12V battery. Find the charge on the
capacitor, the current, and the voltages on the capacitor and resistor at the instant the switch is closed, t = 0.

Solution: At t = 0 the charge on the capacitor is zero.

At t=0, the current is i=V/R=12V/10×103Ω=1.2×10-3A.

At t=0, the voltage on the capacitor is zero (it has no charge) and the entire battery voltage of 12V is across the
resistor.

<><><><><><><><><><><><>

32-2 For the circuit of problem 32-1, find the time constant, and the charge, current, and VR, and VC at a time
equal to one time constant.

Solution: The time constant is RC=10×103Ω.20×10-6F = 0.20s.

The charge on the capacitor at t = 0.20s is



The current at t= 0.20s is

The voltage across the capacitor is VC=V(1-e-1)=12V.0.63=7.6V.

The voltage across the resistor is 12V-7.6V=4.4 V.

These problems can be deceptively easy. Be sure you know how to manipulate the exponents on your
calculator. Don't get a test problem wrong because you did not practice all the steps in the problem and were
unfamiliar with manipulating exponents on your calculator.

<><><><><><><><><><><><>

32-3 For the circuit of problem 32-1, how long does it take for the capacitor to reach 80% of its final charge?

Solution: This problem is similar to radioactive decay problems where we want to know the time for half the
material to decay. There is a fair amount of algebraic manipulation that is easier to follow without numbers, so
the problem will be worked as far as possible with symbols.

Start with q=CV(1-e-t/RC) and note that the final (fully charged) q is equal to CV.

Mathematically, when t → ∞, e-t/RC → 1 so q → CV.

To find the time for 80% charge set q equal to 80% of the final charge, or q=0.80CV, and solve for t.

For convenience switch to positive exponents so 1/e-t/RC=0.20 or e-t/RC=1/0.20=5

In order to solve for t, switch the exponential equation to a logarithmic equation. One of the functions of
logarithms is to solve for variables in exponents.

Now put in the values for R and C.

As a check note that 1-e-t/RC=1-e-0.32/0.20=0.80

Discharging

After the capacitor is left to charge for a long time (many time constants) the charge is CV. Move the switch to
the discharge position (down in Fig. 32-1) where R and C are in series. When the charged capacitor and resistor
are placed in series the charged capacitor acts as a battery. The voltage on the capacitor is q/C, and this voltage
appears across the resistor as iR. As time goes on, the charge on the capacitor is depleted and the current drops
(eventually) to zero. The charge decays according to



and the current according to

The negative sign indicates that the current in the resistor is in the opposite direction from the charging
situation, which must be the case.

Mathematical analysis of the discharge circuit starts with a Kirchhoffs law loop type of statement.

and solving

Again notice that the choice of constant is very convenient because

Now impose the initial condition, At t=0, q=CV, so K2=CV and

The charge on the capacitor decays with the same time constant, RC.

32-4 For the circuit described in problem 32-1 placed in the discharge mode, how long does it take for the
circuit to discharge to 50% of its original (total) charge?

Solution: Solve equation 32-5 for t when q=0.50CV

It is more convenient to write 0.50 as 1/2, so when the statement is converted to logarithms,

In terms of time constants this would be 1n2 time constants, or 0.69 of a time constant.



It makes sense that our answer is less than one time constant since it takes less time for the charge to decline to
50% of its initial value than to 37% (1/e) of its initial value.

32-5 An RC circuit is observed during discharge to have an initial capacitor potential of 100V and after 3.0s to
have a potential of 20V. How long will it take for the capacitor to discharge to 1.0V.

Solution: The voltage across the capacitor at any time is determined by equation 32-5 rewritten as q/C, or
VC=Voe-t/RC, where Vo is the voltage at t = 0.

Take Vo=100, VC = 20V, and t = 3.0s and write

Switching to logarithms

Knowing this number, the specific decay law for this circuit can be written V = 100Ve-t/1.9.

Now calculate the time for the voltage to drop to 1.0V.

Switching to logarithms

Go back over this problem and note the procedure.

1. After reading the problem, the general law (equation) was written down, VC=Voe-t/RC.

2. Next the data from the problem (100V going to 20V in 3.0s) was used to find RC.

3. With RC the specific law for this problem was written, V=100Ve-t/1.9.

4. Finally, with this specific law the predictive calculation was performed to find the time for the 100V to decay
to 1.0V.

This analysis procedure is typical of growth and decay problems in general. Be familiar with the steps in this
procedure. It will keep you from getting lost and not knowing how to proceed in problems like this.



Chapter 33
Magnetic Fields

The magnetic field or B field is a field that produces a force on a moving charge. This is not the only
definition, but it is a good operational definition to start with. The force is given by the vector relation

Cross products are discussed in detail in the Introduction, Mathematical Background. In a coordinate system the
relation is shown in the accompanying figure.

Fig. 33-1

To fix the direction of the force on a positive charge, place the right hand with fingers pointing in the direction
of v, and a line normal to the palm of the hand pointing in the direction of B. Curl the fingers naturally into B.
The thumb points in the direction of F. For a negative charge the force is in the opposite direction. The force is
a right angles to the plane of v and B.

Since this is a vector it can be expressed as a cross product in determinant form,

or in magnitude and direction form, F = vB sin φ, where φ is the angle between v and B and F points in a
direction normal to the plane of v and B as determined by the right-hand rule.

Most problems involve v and B at right angles, so the magnitude of the force reduces to the product of q, v, and
B with the direction of F determined by the right-hand rule.

The units of B are (from the force equation 33-1) N.s/C.m or N/A.m, which is called a Tesla (T). The Tesla is
related to the smaller and widely used unit the gauss (1 Tesla = 104 gauss).

33-1 Calculate the deflection of the electrons in a typical video display tube due to the earth's magnetic field.
Take the electrons with 10KeV energy. Orient the tube north to south and with the electron beam at right angles
to the earth's B field of 0.40 gauss.

Solution: First calculate the velocity of the electrons using an energy relation eV = (1/2)mv2.



Convert gauss to Tesla: 0.40 gauss(1T/104 gauss) = 4.0 × 10-5 T.

The force on the electron is

Fig. 33-2

Now for the direction. Place the right hand in the direction of v (out of the paper) and curl the fingers into B
(down) so the thumb points to the right (looking at the paper). Because this is a negative charge, the force is to
the left.

The electron is deflected in a horizontal plane. B in the vertical direction always produces a force in the
horizontal plane and at right angles to the velocity causing the electron to move along a circular path. A mass
whirled on the end of a string moves in a circle because the (centerdirected) force is at right angles to the
velocity throughout the motion.

This last problem is typical of many problems with charged particle trajectories in magnetic fields where the B
field is always at right angles to the motion so the vector problem reduces to one of finding the magnitude of the
force and then determining the direction via the right-hand rule. This next problem is illustrative of a more
difficult problem where the velocity vector has two components. Be sure you have mastered the calculation in
problem 33-1, and above all the direction, before moving on to this more difficult problem.

33-2 Take an electron with velocity (components) v = 2.0 × 106 i-3.0 × 106 j m/s and a B field of B = 4.0 × 10-3

K T.

Solution: The force vector in component form is



It is a bit hard to envision, but a velocity vector in the x-y plane curled into a B-field vector in the z-direction
produces a force vector in the x-y plane. Figure 33-3 shows the orientations.

Fig. 33-3

There are several classic phenomena, experiments, and equipment associated with moving charges in B-fields.
These are both interesting and instructive. You will probably use one or more of these instruments in your
work.

The Cyclotron

If a particle with negative charge, mass, and velocity is injected into a B field in a plane normal to the field the
force is at right angles to the velocity and remains at right angles to the velocity throughout the motion causing
the charged particle to go in a circle as shown in Fig. 33-4. A positively charged particle would move in a circle
in the opposite direction.

Fig. 33-4

The force is at right angles to the velocity. Apply the v × B law for a negative charge. The magnitude of this
force is qvB, and it is always at right angles to the velocity. From mechanics, a motion produced by a force at
right angles to the velocity is circular, thus the charged particles move in circular orbits. This qvB force
provides the (mechanical force)mv2/r, so equating these forces

There are several relations that follow from this statement, but for the cyclotron the most important is one for
the orbit radius

and the one for the angular frequency



33-3 An electron of energy 4.0 KeV is circulating in a plane at right angles to a magnetic field of 3.0T. What is
the radius of the orbit?

Solution: The geometry is the same as in Fig. 33-4. First, calculate the velocity from the energy.

Now calculate r

33-4 An α-particle moves in a circle of radius 5.0 × 10-2 m in a magnetic field of 2.0 T. Find the speed of the α-
particle and the frequency and period of the motion.

Solution: An α-particle is a helium nucleus, which has two protons and two neutrons. The speed of the α-
particle is from the defining equation for the cyclotron.

The angular velocity is (analogous to mechanics)

The frequency, or what is called the cyclotron frequency, is f = w/2π = 1.5× 107 1/s.

The period, or time for one transit of the circle is T = 1/f = 6.7 × 10-8 s.

<><><><><><><><><><><><>

A cyclotron is a device for accelerating charged particles while they are being forced to travel in a circular path
by a magnetic field. A source of, say, deuterons is placed at the center of the device. A deuteron is a proton and
neutron combination with one electronic charge and 2 amu. An amu (atomic mass unit) is the average mass of a
nuclear resident (neutron or proton). The deuterons exit the source with a small velocity to the right. The radius
of the circular orbit is given by r = mv/qB and is quite small. The particle enters a semicircular open area
between “D” shaped plates and travels in a circular orbit until it exits the “D” area. The voltage between the
Dees, as they are called, is alternated sinusoidally so that on leaving the right Dee the particle is accelerated and
assumes a new (larger) orbit in the left Dee. When the particle leaves the left Dee the voltage is again switched
so that acceleration is accomplished across the Dees. Remember that the angular frequency is qB/m, and is not
dependent on velocity!



Fig. 33-5

33-5 Calculate the frequency of oscillation of the Dee voltage for a deuteron in a 2.0T magnetic field.

Solution:

<><><><><><><><><><><><>

33-6 What is the maximum energy of a deuteron in this cyclotron with maximum available radius of 1.5m?

Solution: The kinetic energy is (1/2) mv2, but v can be written in terms of the r, q, B, and m according to the
basic equation defining the cyclotron orbits.

The deuteron gained this large amount of energy by making many traverses of the distance between the Dees as
the voltage was alternating at the cyclotron frequency.

The Mass Spectrometer

Another application of the circular orbits in a magnetic field is in the mass spectrometer. Ionized atoms are
injected into a magnetic field at a known energy (velocity). They take up circular orbits with radii determined
by their mass. The ions are detected with a photographic plate or traveling collector.

The ions are accelerated (by a voltage) to a particular energy before they enter the magnetic field region. Their
energy is their charge times this accelerating voltage. This is the energy the ions have while orbiting in the
magnetic field. (See the previous problem.)

Fig. 33-6



The ions strike the photographic plate a diameter x = 2r from the injection point, so 

33-7 Calculate the mass of a singly charged ion accelerated through 4120V and striking the collection area at
7.0 × 10-2 m from the entrance point in a 1.0T field.

Solution:

The ion is carbon 14, an isotope of carbon 12.

<><><><><><><><><><><><>

Another function of this type of mass spectrometer is to separate out isotopes, atoms with the same nuclear
charge and number of electrons but with different nuclear mass. The sensitivity of the spectrometer can be
found by looking at the variation of x with m. Start with

 and ask how m varies with x: 

The sensitivity is measured by the ratio of ∆m tom.

33-8 Calculate the resolution required of the photographic plate to differentiate between carbon 12 and carbon
14.

Solution: Use the diameter from the previous problem, 7.0 × 10-2 m, and m as 12 amu with ∆m as 2 amu.

This value is easily obtained on a photographic plate.

The J. J. Thomson Experiment



The J. J. Thomson experiment uses crossed electric and magnetic fields to measure the charge to mass ratio for
the electron. This was a classic turn-of-the-century experiment.

Fig. 33-7

The force equation for moving electrons subject to both electric and magnetic fields is

The electric and magnetic fields are arranged as shown. Verify that a negatively charged particle will
experience a “down” force due to the magnetic field and an “up” force due to the electric field. In the tube, the
voltage V accelerates the electrons from the hot filament and the electrons enter a field-free region between the
accelerating grid, shown as the dotted line, and the video screen.

In the experiment, a deflecting electric field is applied and the spot on the screen is observed to move up on the
screen. The B field is added to bring the spot back to zero deflection. In this situation the net force is zero and
because of the directions of E, v, and B, E = vB.

33-9 An electric field of 1.0 × 103 V/m and a magnetic field of 0.35T act on a stream of electrons so as to
produce zero net force. What is the speed of the electrons?

Solution:

<><><><><><><><><><><><>

The velocity of the electrons is determined by the accelerating voltage in the tube. The electrons are accelerated
before they enter the region of crossed E and B fields and travel through this region and to the screen without
further acceleration axially down the tube. The kinetic energy of these electrons is eV, the electronic charge
times the accelerating voltage. For zero deflection an energy statement can be made replacing v with E/B.

from which



The charge to mass ratio for the electron can be determined by the applied voltage and fields in the tube.

33-10 Calculate the charge to mass ratio for charged particles in a J. J. Thomson tube with accelerating voltage
of 3000V and crossed fields of E = 6.5 × 104 V/m and B = 2.0 × 10-3T.

Solution:

Verify that this is the correct charge to mass ratio for electrons.

The Hall Effect.

The Hall effect is used to determine the algebraic sign and number density, n, of charge carriers in a conductor.
Set up a slab of unknown material in a magnetic field as shown. In one sample (left

Fig.33-8

side of Fig. 33-8) assume the current is due to charge carriers that are positive, and, in the other, negative.
Apply the v × B force on each, with the B field directed into the page, and notice that despite the sign of the
carriers they will be deflected to the right. This accumulation of carriers will create a “transverse” or Hall
voltage, which has a different direction depending on the sign of the charge carriers. In the sample on the left
(positive charge carriers) point b is at a higher potential than point a. In the sample on the right (negative charge
carriers) point b is at a lower potential than point a. The sign of the voltage produced in the Hall experiment
gives the sign of the charge carriers. Charges build up to produce an electric field (the transverse Hall field) that
just balances the magnetic force on the charge carriers.

This Hall field is EH = VHd.

The Hall field is also the E in the statement for zero force, 0 = qE + qv × B.

This produces a Hall field of EH = vdB.

The current density in the sample is j = nevd.

Combining,  from which the charge carrier density is



33-11 In a Hall experiment the current is 2.0 × 10-3 A when 2.0V is applied to a semiconductor of length 6.0cm,
width 3.0cm, and depth 0.20cm. A magnetic field of 2.0 T produces a Hall voltage of 2.0×10-4 V. Find the sign
of the charge carriers, their number density, and the resistivity of the material.

Fig. 33-9

Solution: The sign of the Hall voltage indicates negative charge carriers. Now calculate the current density.

The Hall field is EH = VH/d = 2.0 × 10-4 V/3.0 × 10-2 m = 6.7 × 10-3 V/m.

The number density of charge carriers is

The resistivity of the sample is easily calculated from the defining statement E=ρj and remember that this E is
not the Hall field but the field driving the current through the sample.

These measurements of the sign of the charge carriers, their number density, and the resistivity are very
important in the characterization of semiconductor material.

 



Chapter 34
Magnetic Forces

Magnetic fields exert forces on moving charges. If these charges are confined to wires then the fields can be
thought of as exerting forces on current-carrying wires. The vector equation for the force is

where l is the length of the wire taken in the direction of the current. In most instances it is not necessary to do a
formal vector cross product because the direction of the current and the magnetic field are perpendicular. The
one instance where this becomes important is in considering the torque on a current-carrying wire. This problem
is central to several topics and is taken up as a separate exercise.

34-1 A typical problem illustrating the force on a current-carrying wire is the problem of a wire of 0.010kg and
1.0m in length suspended by springs in a B field of strength 30T directed out of the page. What current will
cause zero tension in the springs?

Fig. 34-1

Solution: First consider the direction of the current. The force due to the magnetic field has to be up so the
current has to be from right to left. With the right hand, form I × B with i in both directions to verify this
conclusion. The value of the current that makes for zero tension in the springs occurs when the force due to the
magnetic field balances gravity. This is a force-balance problem.

34-2 Another problem illustrating this force is a rod or bar resting on current-carrying rails with a perpendicular
magnetic field. Take the field as 0.50 gauss (approximately the earth's field) and the separation as 3.0m and
calculate the current needed through the bar of mass 0.20kg with coefficient of friction 0.070 to make it slide
along the rails.

Fig. 34-2



Solution: The orientation of current (either direction in the bar) and magnetic field is such that the force
produced by the il × B will slide the bar along the rails. Verify this with the right-hand rule. The force opposing
this sliding is µmg so this is a force-balance problem.

A Current-Carrying Loop in a B Field

The study of torque on a current-carrying loop leads to the definition of the magnetic moment of a circulating
current, the understanding of the meter movement (voltmeter and current meter), and electric motors and
generators. A loop of wire placed in a magnetic field and oriented as shown in Fig. 34-3 will have no torque or
maximum torque, depending on the orientation (rotation) of the loop with respect to the magnetic field.

Fig. 34-3

As shown in the middle diagram the piece of wire on the right carrying a current, i, represented by the tail of the
current arrow, has a force to the right (l × B) producing no torque. The piece of wire on the left produces a force
to the left also producing no torque. In the diagram on the right the forces are in the same direction but for this
orientation of the coil the torque is a maximum.

Figure 34-4 shows the torque for angles other than for zero or maximum torque. The torque is the component of
this force at right angles to the line connecting the two sides of the coil times b/2 (the lever arm) times 2 (two
wires).

Fig. 34-4

The appropriate component of the force is F sinα. The vector, m, the magnetic moment, is normal to the plane
of the coil and points in the direction of the thumb when the fingers are curled naturally in the direction of the
current in the coil. The angle between m and B is the same as the angle between force and lever arm.



The product ab is the area,A, of the loop. The sin α term implies a cross product and if iA is taken as the
magnitude of m, the magnetic moment, with the direction as defined in Fig. 34-4 then the vector equation for
the torque is

34-3 Find an expression for the torque on a circular coil of radius α carrying a current I placed at an angle to a
magnetic field.

Fig. 34-5

Solution: The definition of the magnetic moment and the expression for the torque based on the magnetic
moment is most convenient. The magnetic moment is m = I A = πa2I. The magnitude of the torque is T = mBsin
α = πa2 IBsin α and the direction is the direction determined by m × B.

<><><><><><><><><><><><>

34-4 Find the maximum torque on a circular coil of 0.050m radius with current of 0.50A and in a magnetic field
of 0.0050T.

Solution The maximum torque is

<><><><><><><><><><><><>

34-5 The plane of a 10 turn rectangular loop of wire 3.0cm by 4.0cm carrying 2.0A is at an angle of 60° with
respect to a magnetic field of 20 T. What is the torque on the loop in this position?

Solution: First calculate the magnetic moment noting that the current is not due to one loop but ten loops. m =I
A = 10.2.0A.12×10-4 m2 = 2.4×10-2 A.m2. Refer to Fig. 34-5 and note that if the angle between the plane of the
coil and the magnetic field is 60°, then the angle between m and B is 30°, so the torque is



<><><><><><><><><><><><>

34-6 An interesting problem is to ask the question, “What dimensions of rectangle will produce maximum
torque for the same length of wire?”

Solution: Take a rectangle with length l, width w,2 and perimeter equal to p=2l+2w. The perimeter relating l to
w is the constraint in the problem. The torque is T = mB = I AB = IlwB. Before looking for a maximum we need
to write l or w in terms of the constraint p.

Now take two derivatives of T with respect to w

The first derivative is zero (indicating a maximum or minimum) when p = 4w and putting this requirement in
for p in the constraint equation (2l + 2w = 4w) requires that l = w. The rectangle must be a square. The second
derivative is always negative indicating that the curve is everywhere concave down and that this point is a
maximum.

d'Arsonval Meter Movement

A schematic of a d'Arsonval galvanometer is shown in Fig. 34-6. The torque on a loop in a magnetic field offset
by the torque of a spiral spring as shown here is the basis for mechanical meter movements. Galvanometers are
mid-reading meters. Current meters use parallel (with the coil) resistors to change the scale of the meter.
Voltmeters use large series resistors to take the small currents necessary to activate the meter to measure
voltage.

Fig. 34-6



The plane of the coil is parallel to the magnetic field so that a small current in the coil produces a torque on the
coil which is offset by the torque of the spiral spring. With this arrangement, the rotation of the coil is
proportional to the current. The external magnetic field (supplied by the permanent magnet) is curved (shaped)
so the field is parallel to the plane of the coil through an angle of typically sixty degrees. Meter movements are
rated as to how much current causes full scale deflection. A movement with a full scale deflection
corresponding to 1.0µA is typical.

Energy Storage in Magnetic Materials

Magnetic dipoles placed in a magnetic field experience a torque. A simple model of a magnetic dipole is a
molecule with a circulating current. These dipoles are rotated depending on the restoring torque of the material
(structure). Picture a collection of magnetic dipolar molecules in a crystalline structure rotated by an external
magnetic field thus stressing the structure. Consider the work done on a magnetic dipole by the application of
an external magnetic field. This work is equivalent to the energy stored in the dipole-field combination.

The energy of the system is taken as zero when m and B are at right angles (α= 90°). The energy at a position α,
analogous to both the electrical and mechanical relationship between torque, angle, and energy, is

In vector notation

34-7 A coil of 5.0 × 8.0 cm dimensions and carrying a current of 0.0020A is rotated 45° by a 20T magnetic field
from parallel to the plane of the field to an angle of 45° with respect to the field (see Fig. 34-5). Calculate the
energy of the system.

Solution: The energy of the system is

This is the energy stored in the system. An external agent would have to perform this amount of work to move
the dipole (coil) back to parallel with the external magnetic field.



Chapter 35
Ampere's Law

Ampere's law describes the magnetic field produced by a current-carrying wire. Two statements give a
complete description of the magnetic field around a wire. The strength of the field is given by

where µo = 4π×10-7 Wb/A.m is the (magnetic) permeability. The direction of the field is (a vector) tangent to a
circle about the current-carrying wire normal to the plane of the current. With the thumb of the right hand in the
direction of the current the fingers naturally curl in the direction of the B fields tangent to concentric circles.
The drawing on the left side of Fig. 35-1 is a view of a current coming out of the paper showing the field as a
vector tangent to the circle and the drop off of the magnetic field with radius. The diagram on the right side is a
three dimensional view of the magnetic field around a current-carrying wire.

Fig. 35-1

Ampere's law is written in the form of an integral

where i is the current contained within the path of the integral. This integral sign with a circle means that the
integral is to be performed over a closed path. In this case the path is a circle in a plane normal to the current
(see Fig. 35-1). The circular path is centered about the wire where the magnetic field is a constant. Over this
circular path the magnetic field vector and dl, the vector representing an element of length of the circle are
parallel so the sum of (integral of) their dot product, B. dl, is the constant B times the circumference of the
circle or B(2πr). Remember that the dot product is the product of the projection of one vector onto another.

35-1 Calculate the magnetic field 7.0m below a power line carrying 12000A of current.

Solution:



This is comparable to the earth's magnetic field. Assuming the power line is parallel to the surface of the earth
then the magnetic field produced by this power line is also parallel to the surface of the earth.

<><><><><><><><><><><><>

35-2 Two long parallel wires separated by 0.60m carry antiparallel currents (the currents are physically parallel
but in opposite directions) of 7.0 A each. What is the resulting field along the line between the wires and 0.40m
from the lower wire?

Fig. 35-2

Solution: At the specified position the magnetic field due to wire 1 is

and directed as shown (right thumb in direction of current with fingers curled). The magnetic field due to wire 2
is

and directed as shown. The total magnetic field is 10.5×10-6T.

The Force on Current Carrying Wires

Parallel wires carrying currents I1 and I2 produce a force on one other. Take the currents as parallel as shown in
Fig. 35-3. The current in wire 1 produces a magnetic field at wire 2 of magnitude B1 = µoII/2πd. This field is
directed down as shown and produces a force on wire 2 of magnitude F2=B1I2l. These forces are usually written
in terms of force per unit length and this is most convenient in this problem. The force per unit length on wire 2
produced by the magnetic field associated with I1 is



The force on wire 2 due to the magnetic field produced by wire 1 is toward wire 1. Go through the v × B
operation until this is clear in your mind. If you encounter a test problem concerning forces on wires inevitably
one part of the question will concern the direction and you don't want to get something this simple wrong
because you didn't practice the v × B operation.

Fig. 35-3

This is the experimental setup that is used to define the ampere. A current produces a magnetic field that
produces a force on another current. Using Ampere's law and this setup current can be related directly to
mechanical force.

<><><><><><><><><><><><>

35-3 Consider two wires coming out of the page carrying equal, and oppositely directed, currents as shown in
Fig. 35-4. The wires are suspended from a common point with 0.40m long cords. The wires have a mass per
unit length of 30 × 10-3 kg/m. Calculate the current to produce an angle of 6°.

Solution: This is a force-balance problem. The horizontal component of the tension (force) in the cord must
equal the force due to the currents. Look at 1.0m of the wire. The mass of 1.0m of wire is 30 × 10-3 kg, and the
force due to gravity mg = 0.29N. This must equal the vertical component of the tension in the cord. From the
geometry,

Fig. 35-4

In Fig. 35-4 the separation of the wires is 2s where s is defined in the figure through sin6° = s/0.40m or s =
0.40m.sin6°. The electric force produced by the current in one wire producing a magnetic field that acts on the
current in the other wire is



and this force must equal the mechanical force, or tension, in the cord so

and solving for I

<><><><><><><><><><><><>

35-4 Calculate the magnetic field 10cm perpendicular to the bisector of the line connecting two wires 2.0cm
apart and carrying antiparallel currents of 100 A each as shown in Fig. 35-5.

Fig. 35-5

Solution: The magnitude of the magnetic field from each wire is µoI / 2πd. Because of the geometry the vertical
components of B1 and B2 add to zero. The horizontal components add to a vector pointing toward the centerline

of the wires with magnitude B = 2B1sin θ. The dimension  . The sin The
magnitude of the resultant field is

Concentric Currents.

In the statement of Ampere's law,  the i is the current contained within the path of the integral. This
is illustrated in the following problem. Take a cylindrical conducting wire of radius 4a and total current I out of
the plane of the page. The current is uniformly distributed over the cross-sectional area of the wire.



Fig. 35-6

First calculate the magnetic field at r = 6a using B = µoI/2πr: B = µoI/12πa.

Now calculate the magnetic field within the wire at a radius of 3a.

The I in this case is the fractional part of I contained within the 3a radius or 

Applying Ampere's law 

Another variation of this problem is concentric conductors with equal and opposite currents as shown in Fig.
35-7. Remember, the magnetic field over a circular path (Ampere's law) is related to the net current within the
path.

The inner conductor is solid and has radius a. The outer conductor is hollow, having an inner radius b and an
outer radius c. The currents are numerically equal but in opposite directions. Look at the magnetic field over
several regions.

Fig. 35-7



Average Field Outside a Wire

Another application of Ampere's law involves the calculus concept of average value of a function.

35-5 Calculate the average value of the magnetic field from 0.50 to 0.10m radially out from a long wire carrying
100 A.

Solution: The magnetic field falls off radially according to B = µ0I/2Πr. The average value of the function over
this interval is the integral of the function (the area under the curve of B vs r) divided by the radial distance. See
the Introduction, Mathematical Background, for the definition of the average value of a function.

Fig. 35-8

The Solenoid

A popular device that is based on the application of Ampere's law is the solenoid, a tightly wound coil
producing a nearly uniform magnetic field along the axis of the coil. The coil is shown in Fig. 35-9.



Fig. 35-9

For tightly wound coils the windings take on the form of a sheet of current, and a cross section looks as shown
in the middle drawing of the figure. The magnetic field around each coil of wire is such that the magnetic field
is concentrated and nearly uniform inside the coil.

The integral around the path a → b → c → d → a is conveniently done in four parts.

The drawing on the right of Fig. 35-9 shows the magnetic fields of adjacent wires. Between the wires, the fields
add to zero so the integrals along the paths b → c and d → a are zero. The path from c → d can be moved
sufficiently far away so that the integral along this path approaches zero. The only non-zero integral is along the
center line of the solenoid, the a → b path. Therefore, if the path length is taken as L then the Ampere's law
becomes

where N is the number of turns per length, so IoNL is the total current within the path.

35-6 Calculate the magnetic field inside a solenoid of 300 turns per centimeter carrying a current of 0.050A.

Solution:

The Toroid

A toroid is a solenoid wrapped so as to form a circle. A section through a toroid is shown in Fig. 35-10.

Fig. 35-10



The application of Ampere's law is very straight forward. The path for the integral is along the center line of the
toroid where the magnetic field is constant, so

 reduces to 

where n is the total number of turns in the toroid. But n/2πr is the turns per unit length. Call this N, as before, so
the field in a toroid is

35-7 Calculate the magnetic field in a toroid of 600 turns, current of 0.76A and center line radius 0.50m.

Solution:



Chapter 36
Biot-Savart Law

Ampere's law allows convenient calculation of the magnetic field surrounding a straight current-carrying wire.
While the law is written in calculus terms the application is quite easy and involves little formal calculus for
most problems. The Biot-Savart law is more general than Ampere's law and allows calculation of the magnetic
field in the vicinity of curved wires. Application of the Biot-Savart law involves considerable calculus. If you
are interested only in the application of the formula for the magnetic field on the axis of a current carrying coil
you may want to skip directly to the problems involved with these calculations. For the physics student with a
reasonable background in calculus the Biot-Savart law is very good for learning how to interpret a differential
law written in vector format.

The magnetic field due to a moving charge or a current is given by the Biot-Savart law.

These are vector equations. They allow calculation of the magnitude of the magnetic field and show the
direction of that field. The equation on the left applies to moving charges and states that the magnetic field at ar
has magnitude µoqv/4πr2 and direction determined by the cross product of v and the unit vector  . The
equation on the right applies to currents in wires and states that the contribution of a length of wire dlto the
magnetic field is µoIdl/4Πr2 and the direction is the direction determined by the cross product of dl and the unit
vector  . The following problem will help in visualizing the cross product.

36-1 Calculate the magnetic field a distance x radially out from a wire carrying a current I.

Solution: Figure 36-1 shows the geometry for calculating the magnetic field due to an element of current in the
wire. Use the differential form of the Biot-Savart law

and integrate. The vector dl is in the direction of 1, and the angle θ is the angle between the vectors dl and r.
Cross dl (in the direction of I) with r to see thatB, at the point P, is into the paper.

Fig. 36-1



Integrate from -a to a and then let a go to infinity to find the expression for the magnetic field due to a long
straight wire. This specific integral was done in problem 25-5 in Chapter 25, Electric Field. Follow along the
steps in problem 25-5 and work through this problem to confirm that the magnetic field outside a long current-
carrying wire is µoI/2πr, in conformity to Ampere's law.

<><><><><><><><><><><><>

36-2 Calculate the magnetic field on the axis of a circular loop of current.

Fig. 36-2

Solution: The Biot-Savart law is most convenient for solving this problem. The cross product of dl and  gives
the direction of the field along the axis as being at right angles to rand in the plane defined by x and r. The loop
of current and dl are in the y-z plane. Start with the law in differential form (equation 36-1) and write the x and
y components of the field.

For every differential increment of length on the loop there is another differential increment of length across a
diameter also producing a contribution to the field. Looking at the components of these fields, the x components
add while the y components add to zero leaving only the x component that contributes to the resultant field. The
field then reduces to the integral of the x component.

At the center of the loop, x = 0 and the expression for the field reduces to



For a coil of N loops the current is multiplied by N.

<><><><><><><><><><><><>

36-3 What is the magnetic field at the center of a circular coil of radius 5.0 × 10-2m carrying a current of 0.25 A
and having 40 turns?

Solution: The field is perpendicular to the plane of the loop at the center and has value

<><><><><><><><><><><><>

36-4 For problem 36-3, what is the field 5.0 × 10-1m distance along the axis?

36-5 A 3.0µC charge at x = 0, y = 1.0m has a velocity vx = 5.0 × 107 m/s. A -4.0µC charge at x = 2.0m, y = 0 has
a velocity vy = 8.0 × 107 m/s. What is the magnetic field at the origin due to the motion of these charges?

Solution: For the first charge the  vector points down (from the charge to the origin) and v ×  shows the
magnetic field at the origin as into the page. The magnitude of this field is

Fig. 36-3

For the second charge the  vector points to the left (from the charge toward the origin) and v ×  is a vector
pointing out of the page, but the negative charge makes the field point into the page. This magnetic field has
magnitude



The total magnetic field is 2.1 × 10-5 T directed into the page.

<><><><><><><><><><><><>

36-6 What is the magnetic field at the center of a semicircular piece of wire with radius 0.20m and carrying
150A of current?

Solution: Start with equation 36-1 in differential form, and referring to Fig. 36-4, form dl×  that shows B into
the page at the center of the semicircle. Integrating equation 36-1 produces

Fig. 36-

The connecting wires are on radii out from the center of the semicircle, so dl×  = 0 and they contribute no
magnetic field at the center of the semicircle



Chapter 37
Faraday's Law

There are two basic experiments demonstrating Faraday's law. The first experiment involves passing a magnet
through a loop of wire. If a magnet is passed through a loop of wire connected to a galvanometer as shown in
Fig. 37-1 then three things are observed:

Fig. 37-1

1) a current is observed in the loop when the magnet is moving,

2) the direction of the current depends on the direction of the magnet,

3) the magnitude of the deflection (current) is proportional to the strength of the magnet and its velocity.

The second Faraday experiment involves two loops of wire. If the current in the primary loop (the one with the
battery) is changed, then there is a current in the secondary loop (the one with the galvanometer).

Fig. 37-2

If the switch connecting the battery to the loop is opened and closed three things are observed:

1) a current in the galvanometer loop is observed when the switch is closed,

2) a current in the opposite direction is observed when the switch is opened,

3) no current in the galvanometer loop is observed when there is steady or zero current in the battery loop.

These two experiments are the basis for a statement of Faraday's law. An emf and current is induced in a loop
when there is a change in magnetic field in the loop. The magnitude of the induced emf is proportional to the
rate of change in magnetism.

The amount of magnetism is conveniently envisioned as lines of flux φ. For a constant magnetic field, and area
normal to the field, flux is related to magnetic field through



The magnetic field can be envisioned as a collection of (magnetic) lines (of flux) with a higher magnetic field
being associated with a higher density of flux lines (more lines of flux per square meter). Picture a square frame
one meter on a side oriented normal to the direction of a magnetic field. A stronger (higher Tesla) field is
viewed as one with more lines passing through this frame. There are no physical lines of flux. This is a
convenient construct that allows us to visualize magnetic fields.

The formal definition of flux involves an integral that looks difficult, but in concept it is relatively easy to
understand and in practice is often done by inspection.

The vector ds is a vector normal to a surface. B is the vector representing the field passing through this surface.
If B and ds are pointing in the same direction the integral reduces to equation 37-1. Even when an integral is
required most of the time B is at a fixed angle with respect to ds so the integral involves the area and an angle
without any formal integration.

The unit of flux is Tesla-meter square which has a special name, Weber. One Weber's worth of flux passing
through a square meter produces a field strength of one Tesla.

The Faraday's law specifically states that the emf induced in a closed loop is the change in flux per time.

The delta form of this statement implies that the emf is the average emf over the time interval. The minus sign
is a reminder of the convention for determining the direction of the emf. For multiple turns of a coil the emf is
just the number of turns times this change in flux over time. The direction of the induced emf is such as to
produce a magnetic field in opposition to the field that created the emf. This will be discussed in detail in the
context of a problem. Now look at several means for generating emf's in wires.

This induced emf is different from the emf produced by a battery. In the case of a battery, a terminal voltage can
be measured and the emf of the battery can be associated with the battery raising the potential of charges
passing through it. In the case of a loop of wire there are no terminals, yet there is a current so we say that this
current must be due to an electromotive force, a force that makes electric charges move. While there are no
terminals to measure voltage in the loop, the current in the loop due to magnetic induction is just as real as the
current produced by a battery.

37-1 Place a 20 turn coil of radius 0.050m inside a solenoid where the magnetic field is changed from 40 × 10-3

Tin one direction to 40 × 10-3T in the other direction in 60 × 10-3s. Find the induced emf.

Fig. 37-3

Solution: Inside the coil the flux is Φ= BA = 40 × 10-3 Tπ(0.05m)2=3.1 × 10-4 Wb.



The change in flux is ∆Φ = 6.2 × 10-4 Wb, and this occurs over 60 × 10-3 s in the coil of 20 turns so the induced
emf is

Lenz's Law

To determine the direction of the induced current look at the coil and the direction of the initial and final
magnetic fields through the coil. The field originally pointing to the right collapses to zero and then grows to
the left to its final value. The current is physically constrained by the wire to go only in one of two directions. If
the current in the coil were such that the field produced by this current grew in the same direction as the field
that initiated the current then the current would continue to grow (because the field would continue to change in
the same direction). This would mean that any time a field changed in a loop of wire the current in the loop
would grow without limit. This is clearly contrary to nature. Lenz's law, applied to this situation, states that an
induced current is in a direction so as to produce a field that opposes the changing field that initiated the
current. This will be shown in subsequent problems.

37-2 A circular loop 0.040m in radius is perpendicular to a magnetic field of 0.50T. The loop is stretched,
across a diameter, so that its area goes to zero in 0.20s. What is the induced voltage and direction of the current
through the resistor?

Solution: The flux through the loop is Φ=BA=0.50T.∆(0.04m)2 =2.5×10-3Wb.

The emf is 

Fig. 37-4

The current is such as to produce a magnetic field out of the page (or in opposition to the collapsing magnetic
field). The current is counterclockwise in the stretched loop and up on the resistor.

<><><><><><><><><><><><>

37-3 Take a 50 turn rectangular coil of dimensions 0.10m by 0.20m and rotate it from a position perpendicular
to a field of 0.50T to parallel to the field in 0.10s and calculate the induced emf.



Fig. 37-5

Solution: The flux Φ=BA. In addition, ∆Φ=BA since the flux goes from maximum to zero.

The coil is 50 turns, so the induced emf is 

37-4 Now instead of flipping the coil from perpendicular to parallel, rotate it with uniform angular velocity.

Solution: The expression for the flux, assuming the rotation is clockwise is

The coil rotates through an angle of ∆/2 in 0.10s so φ=0.50T.2.0 × 10-2 m2 cos(∆t/0.20s)

The instantaneous emf is

The units in this calculation are helpful in understanding the emf generated in a loop. A T.m2 is a Weber, a
measure of the number of lines of flux. Webers per second is the number of flux lines per second that are
changed within a loop. One Weber's worth of flux lines per second generates an emf of one Volt in the loop.

<><><><><><><><><><><><>

37-5 Now find the average emf induced over this time. This is the average value of the instantaneous emf
function over this one-quarter cycle.

Solution: This requires the concept of the average value of a function from integral calculus. Review this
procedure in the Introduction, Mathematical Background, if necessary. This integral is



The integral is done over θ for convenience rather than over ωt and a time interval. The average value of the
first quarter cycle of the sine function is the same as the average value for the first half cycle of the sine
function and the same as the absolute value of the average value of the entire sine function. This is an excellent
example of a problem where the average emf can be calculated using either ∆Φ/∆t (problem 37-3) or the
average value of the function for emf.

<><><><><><><><><><><><>

37-6 For the coil and magnetic field situation of Fig. 37-5 consider continuous rotation at some angular velocity
ω. The maximum flux through the coil is Φ0.

Solution: The flux is Φ=Φ0cosωt.

The time rate of change of flux is 

The instantaneous emf is 

These three quantities are shown in Fig. 37-6.

Fig. 37-6

<><><><><><><><><><><><>

Consider a rectangular loop of wire being pulled through a magnetic field. The field is strength B, width of the
loop L, length of the loop in the field x, and velocity with which the loop is being pulled through the field v.



Fig. 37-7

The total flux within the loop is Φ=BLx

The induced emf is

As the loop is being pulled through the field there is a decrease in the number of lines of magnetic flux pointing
out of the page. Therefore the induced current will be in a direction so as to create more flux out of the page.
This requires a counterclockwise current around the loop. Interestingly this current produces forces on the sides
of the loop. Apply the right-hand rule to the forces and note that the force on the bottom section of the wire is
down, while the force on the top section of the wire is up. These two forces are equal and opposite and so add to
zero. The force on the vertical section of the wire is to the left in opposition to the force producing the velocity.
The force on the wire due to the induced current is BiL. The work performed by this force is (in analog with
mechanics) force times distance or F.x=BiLx.

The power (again in analog with mechanics) is force times velocity or P=F.v=BiLv.

37-7 Pull a loop of width 0.20m, length 0.80m, and resistance 200Ωthrough a magnetic field of 0.40T at
0.20m/s. First find the induced emf and current. Then find the force necessary to pull the loop, the work
performed, and the power, the rate of doing the work.

Solution: The induced emf is emf=-BLv =-0.40T.0.20m.0.20m/s=-1.6× 10-2 V.

The induced current (in the direction shown on Fig. 37-7) is

The force necessary to pull the wire out of the field is

The work performed in completely removing the loop is this force times the length of the loop.

The power delivered to the loop is P=F.v=6.4× 10-6 N.0.20m/s=1.3 × 10-6 W.

<><><><><><><><><><><><>

37-8 A variation of the problem done above is one where the loop is replaced by a “U”-shaped piece of wire
with a sliding piece along the arms of the “U.” Take a 0.60T field and a “U”shaped piece with width 0.30 m.
The entire circuit has resistance of 20 Ω and the sliding bar is moving to the right at 6.0m/s.

Solution: The emf generated in the wire and moving rod is



The current in the loop is i = emf/R=1.1 V/20 Ω=0.054 A.

Fig. 37-8

When the bar is moving to the right, the number of lines of flux (amount) is increasing out of the page, so the
current is clockwise so as to produce a field pointing into the page, i.e., a field opposing the increasing field,
within the “loop” causing the current.

The work performed in moving the bar is

Compare this with the Joule heat production H = i2R = (0.054 A)2 (20Ω)=0.058J.

<><><><><><><><><><><><>

Calculation of the total flux through a rectangular frame placed with its long side parallel to a current-carrying
wire is very helpful in understanding how to apply calculus to a physics problem.

Fig. 37-9

The geometry is shown in Fig. 37-9. What is desired is the total flux in the rectangle of width b-a and height L.
The magnetic field at any point, x, a radial distance away from the current, is B=µ0I/2πx.

The incremental flux over the strip of width dx is the flux at the point x times the incremental area

The total flux over the frame is the integral of dφ from a to b.



37-9 For the situation described above the current in the wire increases from zero to 20 A in 0.10s. Find the
induced emf over a rectangle with a = 0.20cm, b = 0.60 cm, and L = 1.0 cm.

Solution: emf = ∆Φ/∆t and ∆Φ is the total flux, so

Time Varying Magnetic Fields.

There is another aspect of Faraday's law associated with time varying magnetic fields. Place a conducting loop
of wire in a magnetic field that varies with time and make the field increase out of the page so that the flux
contained within the loop increases as shown in Fig. 37-10.

The emf generated in the loop is dΦB/dt. In the wire there must be an electric field. In equations involving time
varying magnetic fields the magnetic flux is often indicated with φB to avoid possible confusion with electric

flux. Because of the symmetry 

Fig. 37-10

In this instance potential has no meaning (cannot be defined). Further, a physical wire is not necessary for the
existence of the electric field caused by this changing flux. With the emf defined by the changing flux and the
integral of the electric field, we can make the identification

and remembering that ΦB = BA we have as a solution

37-10 Calculate how an electron placed at 0.30m radius would be accelerated in a changing magnetic field of 50
× 10-6 T/s.

Solution: The force on the electron would be eE = ma so



Accelerating devices using this principle are called synchrotrons.



Chapter 38
Inductance

If two coils are placed nearby, the current in one sets up a magnetic field or flux through the other. If the current
in the one is changing, then there is a changing magnetic field and flux in the other producing an induced emf
and current. In equation-like statements:

Current in one produces flux
in the other.

Changing current in one
produces an emf in the other.

Self Inductance

Further, a changing current in an isolated coil produces an emf in itself. This is called a self-induced emf. The
direction of the self-induced emf is so as to produce a current that opposes the current that set it up.

Calculation of the self-induced emf follows from a consideration of the geometry of the coil. Consider a close
packed coil with a flux, Φ, passing through each of N turns of the coil. The number of turns times the flux is
called the flux linkages, NΦ. The self-induced emf is proportional to the time rate of change of these flux
linkages. In the language of calculus, the selfinduced emf is proportional to d/dt of NΦ, so

The quantity NΦ, the flux linkages, is proportional to the current, so make NΦ= Li where L is a constant that
depends on how much flux is linked to the coil. Rewriting equation 38-1 with the defined constant L

The unit of inductance is the Henry which, from equation 38-2, must have units of V.s/A.

The self inductance, or inductance as it is often called, can be calculated for a solenoid. Consider a solenoid of
length l having N turns or n turns per unit length. Inside the solenoid the flux is BA, so the number of flux
linkages is NΦ=(nl)BA. For a solenoid the magnetic field is µoni, so

The quantity NΦ is equal to the constant L times i so

The inductance of a solenoid is entirely geometry dependent. Adding a magnetic material to enhance the flux
linkages only makes the inductance also dependent on material.

38-1 Calculate the inductance of a solenoid of radius 0.0040m, length 0.015m, and 1.0 × 104 turns per meter.

Solution:



<><><><><><><><><><><><>

The geometric factors n, l, and A (equation 38-3) are difficult to calculate in a closely wound coil, so the
measurement of inductance is often done operationally using emf = L(di/dt). Most inductors, or choke coils as
they are sometimes called, are not solenoids but short (in length) tightly wound coils. In this geometry it is very
difficult to calculate the inductance based on geometry, so this operational method is employed.

38-2 For a coil of 300 turns and inductance 12 × 10-3 H, find the flux through the coil when the current is 5.0 ×
10-3 A.

Solution: Use the relationship between flux linkages and inductance NΦ= Li.

Mutual Inductance

If there are coils within, or adjacent to, other coils, then we can define mutual inductance, the linking of one coil
with another via the flux. If the flux is changing, then the current in the one coil is linked to the current in the
other coil.

The simplest case to consider is one solenoid-like coil inside another solenoid-like coil. The voltage induced in
the second coil is proportional, via the flux linkage, to the changing current in the first coil. The mathematical
statement is

The reverse is also true. The voltage induced in the first coil is proportional to the changing current in the
second coil.

The constants are the same. The geometry is the same. These“geometric coupling constants” are again labeled
L, the inductance.

38-3 Consider a coil within a coil. The larger coil is 3.0cm in radius, 10cm in length with 1200 turns. The
smaller coil is 2.0cm in radius, 4.0cm in length with 50 turns. Calculate the inductance.



Fig. 38-1

Solution: The current in the large solenoid sets up a magnetic field within the coil of B = µoNi/l. Assume the
flux is uniform across the inside of the large coil so that the flux through the small coil is this B times the area
of the small coil Φ2 = BA2. The 1 subscript refers to the large coil and 2 refers to the smaller coil. The mutual
inductance, in accord with the definition of self inductance is the number of flux linkages divided by the current

The inductance is totally geometry dependent. For this particular combination of coils

38-4 For the situation of problem 38-3 find the voltage induced in the second coil as a result of a steady change
in current of 0.50 A/s.

Solution:

<><><><><><><><><><><><>

38-5 Two coils wound together as a single package have an inductance of 6.0×10-3 H. Find the voltage induced
in the second coil when the current is changing in the first at the instantaneous rate of 20 × 10-3 A/s.

Solution:

Power and Energy Storage

If the emf generated in an inductor is L(di/dt) and the power in an electric circuit is voltage times current, then
the general expression for the power in an inductor is



The energy stored in a conductor is the integral over time of the power (remember power is work over time), or
in differential form dU = Lidi, so the total energy stored in a coil (the energy is actually stored in the magnetic
field) when the current goes from zero to some value i is the integral of this expression

See Chapter 39, R-L Circuits, for another discussion on this topic.

The energy density in a solenoid is the total energy stored in the solenoid divided by the volume.

Using L = µon2lA,

Or using B = µoni.

Compare this with the expression for the energy density in an electric field 

38-6 Calculate the energy density in the large coil of problem 38-3 for a current of 0.10 A.

Solution:



Chapter 39
R-L Circuits

Our first look at R-L circuits is with a simple word description of the behavior of the current in the circuit of
Fig. 39-1. After this general description of how the circuit behaves, we will take a closer look at the
mathematical description. The important point to keep in mind in this discussion is that the voltage across an
inductor is proportional to the rate of change in current.

Increasing Current

Fig. 39-1

When the switch is closed to place the resistor and inductor in series with the battery, current begins to flow in
the circuit. Because of the self-induced emƒf in the inductor, that is proportional to the rate of change of current,
all of the battery voltage does not instantaneously appear across the resistor. The current in the circuit rises in an
exponential manner to (its final value of) V/R according to equation 39-1.

This function is consistent with our understanding of inductors: as time goes on the current rises to V/R.

When the battery voltage is applied to R and L in series, voltages across these components vary with time. We
can, however, write a Kirchhoff-type voltage statement that is valid for all time.

which can be solved for i. The solution is similar to the one for the R-C circuit done in an earlier chapter. A
review of that more detailed analysis may be helpful before continuing. Rewrite this equation as

Switching to a more convenient form for integration

Integrating with a change of variable as before



Switching to exponentials

The constant, K, can be evaluated in either of these equations by imposing the initial condition that at t = 0, i =
0, so K = -V/R and

The time constant in the circuit is L/R. The rate of change of current in the circuit is

There are three graphs (Fig. 39-2) that describe how the voltage and current vary in the circuit.

The graph of i = (V/R)(1-e-Rt/L) versus t shows how the current in the circuit varies with time.

The graph of vR = iR = V(1-e-Rt/L) versus t shows the exponential rise of voltage across R.

The graph of vL = L(di/dt) = Ve-Rt/L versus t shows the exponential decay of voltage across L.

Fig. 39-2

As an exercise show that the Kirchhoff equation V = iR + L(di/dt) is satisfied by substituting the expressions for
i and di/dt. The analysis is also verified by the graphs: the voltage across the resistor is growing in a one minus
exponential manner while the voltage across the inductor is decaying in an exponential manner.

39-1 Place a 60V battery in series with an inductor of 50×10-3H and a resistor of 180Ω. What is the current and
the rate of change of current at t = 0?

Solution: Using  and  it is clear that at t =0, i = 0,

but 



<><><><><><><><><><><><>

39-2 For the same circuit, what is the time constant?

Solution: The time constant 

<><><><><><><><><><><><>

39-3 For the same circuit, what is the rate of current increase at t = 1.0×10-4 s?

Solution: Using 

<><><><><><><><><><><><>

39-4 For the same circuit described in problem 39-3, what is the rate of current increase when i has reached
90% of its final value?

Solution: Translated into mathematics, the question reads, “Find di/dt when i =0.90(V/R).” First find t when i =
0.90(V/R). Set i = 0.90V/R in equation 39-1 and solve for t.

Solve for t by switching to logarithms: t = 2.8×10-4 1n10 = 6.4×10-4 s

This is not a common type of problem, so go back over these equations and be sure you know how to
manipulate the exponents and logarithms.

Now place this time in equation 39-2.

<><><><><><><><><><><><>

39-5 Construct the circuit of Fig. 39-1 with an inductor of 10 H, a resistor of 12 Ω, and a 10 V battery. Calculate
the time constant, the rate of change of current, and the voltages across the resistor and inductor at one time
constant.



Solution: The time constant is 

The rate of change of current is 

The voltage across the resistor is vR = iR = V(1-e-t/0.83s) = 10(1-e-1)V = 6.3 V.

The voltage across the inductor is 

Decreasing Current.

Referring back to Fig. 39-1, suppose that the current has reached the steady state condition, the R and L are
placed in series, and the battery removed. At the instant the battery is removed there is no voltage across the
inductor. The circuit has reached steady state and (di/dt) = 0 so L(di/dt) = vL is zero. There is, however, full
battery voltage across the resistor. This voltage drops as the current in the circuit drops in an exponential
manner according to equation 39-3.

In this situation the loop equation is

which has solution

The constant can be obtained by imposing the initial conditions. At t = 0 (in decay mode), i = io. The io has the
value V/R (initially all the battery voltage is across the resistor). With the constant evaluated

and

The voltage across the resistor is vR = iR=Ve-Rt/L.



The voltage across the inductor is 

Graphs of i,vR, and vL are shown in Fig. 39-3.

Fig. 39-3

39-6 For the circuit described in problem 39-5 operating in decreasing current mode, calculate the time for the
voltage to decay to one-half the steady state value. Then find the voltages across R and L at this time.
 

Solution: The time constant, calculated earlier, is 0.83s. The time for the current to drop to onehalf the steady
state value is found by replacing i in equation 39-3 with 0.50io/sub>.

A more convenient form for logarithms is

Taking logarithms and remembering that 1n(1/2)= 1n1 - 1n2 = 0-1n2 = -1n2,

The voltage across the inductor is 

The voltage across the resistor is 

The voltages vR + vL add to zero as they must since they are the entire circuit!

Energy Storage

The energy stored in an inductor is, from Chapter 38, Inductance,



In this circuit in the increasing current mode, energy is being stored in the magnetic field associated with the
current in the coil. In the decreasing current mode the energy stored in the magnetic field of the coil leaves as
the magnetic field and current collapse. This energy is dissipated as heat in the resistor.

39-7 In the circuit described in problem 39-5, what is the maximum energy stored in the (magnetic field of the)
coil?

Solution: 



Chapter 40
Oscillating L-C Circuits

In the next two chapters we will look at L-C and R-L-C circuits from two different points of view. Our view in
this chapter is concerned with the transient response of the circuit, that is how the circuit responds to an initially
charged capacitor. In the next chapter we will look at how the circuit behaves when it is driven by a sinusoidal
voltage source.

L-C Circuits

Charge a capacitor and place it in series with an inductor as shown in Fig. 40-1.

Fig.40-1

When the charged capacitor is connected to the inductor, the maximum possible voltage is applied across the
inductor. This maximum voltage results in the maximum rate of increase in current in the circuit, vL = L(di/dt).
As time goes on, the voltage drops, the rate of change in current drops, but the current increases. Maximum
current and zero voltage across the capacitor are coincident. The current continues in the same direction until
the capacitor is fully charged in the opposite (from original) direction. In the absence of energy-consuming
resistance the voltage (across the capacitor) and current (in the circuit) continue to vary sinusoidally 90° out of
phase.

This circuit behaves analogous to the mechanical mass-spring system with the capacitor playing the role of the
spring and the inductor playing the role of the mass. Voltage is analogous to the compression of the spring.
Energy stored in the spring is equal to kx2/2, and energy stored in the capacitor is equal to CV2/2. Current is
analogous to the velocity of the mass. Energy stored in the velocity of the mass is equal to mv2/2, and energy
stored in the inductor is equal to Li2/2. Zero spring displacement is coincident with maximum velocity of the
mass, as zero voltage is coincident with maximum current.

The Kirchhoff loop statement for this circuit is

This equation can be rewritten with q the only time dependent variable as

This equation has the same form as the one for the simple harmonic oscillator. (See Chapter 15, Simple
Harmonic Motion.) It is solved by asking the question, “What function differentiated twice produces a negative
constant times itself?” A sine or cosine function is the obvious answer, so “guess” q = qo cosωt with



and putting this into the Kirchhoff equation , we see immediately that the
frequency is

The circuit oscillates between maximum electric field in the capacitor and zero current in the circuit, and
maximum current in the circuit and zero charge (and field) in the capacitor.

40-1 An L-C circuit consists of a 50mH inductor and a 40 µF capacitor. What is the frequency of oscillation of
this circuit? If the maximum charge on the capacitor is 100 µC, what is the maximum voltage on the
components?

Solution: The frequency

The maximum voltage on either component is the same as the maximum voltage on the capacitor, which comes
from the basic definition of capacitance

In an ideal circuit with no resistance, there is no way for energy to enter or leave the system, and the total
energy must be passed back and forth between capacitor and inductor. Energy is stored in the electric field of
the capacitor and the magnetic field of the inductor. The maximum energy in each component is equal, so

40-2 For the circuit described in problem 40-1, what is the maximum energy and the maximum current in the
circuit?

Solution: Maximum energy is

The maximum current is from ,so



R-L-C Circuits

The introduction of series resistance produces the circuit of Fig. 40-2.

Fig. 40-2

If the capacitor is initially charged (before it is placed in the circuit), oscillation will occur. The total energy in
the circuit, however, will not remain constant but decrease at the rate of i2R, the power dissipated in the resistor
as heat.

A Kirchhoff-type voltage equation for the circuit can be written

Again, rewriting with q

The introduction of the iR term makes the equation much more difficult to solve. It is, however, identical in
form to the equation for the damped harmonic oscillator found in Chapter 15, Simple Harmonic Motion. The
addition of the iR term produces an exponential envelope to the oscillations. The specific solution is

 where 

This exponential envelope of a sinusoidal oscillation is what we would expect from this circuit; oscillations that
decrease exponentially. While this equation hasn't been derived, it can be justified by taking the appropriate
derivatives and substituting back into equation 40-6.

40-3 An R-L-C circuit consists of a 10Ω resistor, 200mH inductor, and a 10µF capacitor. The capacitor is
initially charged to 10µC. What is the maximum possible voltage on the capacitor (as dictated by the
exponential envelope) at 0.10s?

Solution: The voltage on the capacitor is proportional to the charge. The value of the exponential function at
any time is determined by taking the cosine function as 1. Using equation 40-6 the charge is



The notation for e has been switched to exp for convenience.

The voltage at this time is 



Chapter 41
Series R-L-C Circuits and Phasors

The previous chapter was concerned with the natural oscillations of L-C circuits. This chapter is devoted to the
study of R's, L's and C's, individually and in combination, in response to sinusoidal voltages.

Alternating Currents

Problems 37-3 through 37-6 in Chapter 37, Faraday's Law, describe how a loop rotated in a magnetic field
produces a sinusoidal voltage and current. This is the basis of alternating current generators. An external agent,
such as falling water or steam, is used to rotate the loop of wire in a magnetic field thus generating a sinusoidal,
or alternating, voltage and current. This alternating current, ac for short, has two basic advantages over direct
current. First, it is easy to increase the voltage for transmission over long distances and later decrease the
voltage for distribution to individual users or for specific applications. (See the “Transformers” section in this
chapter.) Second, an alternating current in a loop placed in a magnetic field rotates, providing rotational power
for all sorts of machines. See the “A Current-Carrying Loop in a B Field” section in Chapter 34, Magnetic
Forces. The basic circuit for the study of alternating current in R-L-C circuits is shown in Fig. 41-1.

Fig 41-1

The circuit is driven by the ac source. This is in contrast with the circuit of Fig. 40-2 where the capacitor is
charged, placed in the circuit, and the transient response studied. The Kirchhoff voltage differential equation for
this circuit is like equation 40-5 except that the right-hand side contains a driving voltage Vocosω. This
dramatically complicates the mathematics beyond the level for most people taking their first physics course. For
this reason we take another, less mathematical, view of this circuit but one that is very helpful in understanding
how the circuit operates.

The Resistive Circuit.

The simplest way to start the study of ac circuits is with a resistor and ac source as shown in Fig. 41-2. The time
varying voltage is v = VRcosωt.

Fig. 41-2

The current tracks (is in phase with) the voltage and is i = (VR/R)cosωt = IR cosωt.

Fig. 41-3 shows the voltage and current as a function of time and (on the right) what is known as a phasor
diagram, an important analysis tool in the study of R-L-C circuits.



Fig. 41-3

The individual vector-like arrows are called phasors. The diagram is started by drawing a phasor IR at some
arbitrary angle ωt. The phasor rotates counterclockwise with the length proportional to IR, and the projection on
the horizontal axis proportional to the instantaneous current. An increase in ωt toward the right on the graph
corresponds to an increase in ωt in the counterclockwise direction on the phasor diagram. When an entire cycle
of a sine wave is complete the phasor will have rotated through 360°. Next the phasor representing the voltage
is drawn at the same arbitrary angle ωt. In a resistor the instantaneous voltage and current are in phase.  The
length is proportional to VR, and the projection along the horizontal axis is proportional to the instantaneous
voltage across R.

The Capacitive Circuit

Figure 41-4 shows a capacitive circuit driven by an ac source.

Fig. 41-4

The time varying voltage is v = VC cosωt. The phase relation between this v and iC is different than for a resistor.
When an alternating voltage is applied to a capacitor the current alternates (flows in one direction, then in the
opposite direction) but does not track with (is not in phase with) the voltage across the capacitor. When the
voltage reaches a maximum the capacitor is fully charged and the current is zero! When the voltage reaches a
maximum in the other direction the capacitor is again fully, but oppositely, charged and the current is again
zero. The current then must be a maximum when the (alternating) voltage is passing through zero.

The charge is in phase with the voltage q = Cv = CVC cosωt.

The current is iC = (dq/dt) = -ωCVC sinωt

The voltage and current are plotted as a function of time in Fig. 41-5 along with the phasor diagram.

Fig. 41-5



The phasor diagram is drawn starting with VC at an arbitrary angle ωt. (Starting with IC produces the same
result.) The hard part in drawing the IC phasor is to figure out how to orient it with respect to VC. The easiest way
to do this is to look at the graph of v and i versus time and ask the question, “Which quantity leads the other and
by how much?” By looking at adjacent peaks note that i reaches its maximum 90° before v. Therefore we say “i
leads v by 90° in a capacitive circuit.” The IC phasor is 90° ahead (rotated 90° further counterclockwise) of VC.

The maximum current is IC = ωCVC or VC = IC(1/ωC) = ICXC.

The 1/ωC term plays the role of resistance and is called capacitive reactance XC.

41-1 A 20µF capacitor is connected to a variable frequency ac source with maximum voltage 30V. What is the
capacitive reactance at 60 Hz, 600 Hz, and 60 kHz?

Solution: 

The Inductive Circuit

Figure 41-6 shows an inductor driven by an ac source. The time varying voltage is v = VLcosωt.

Again the phase relationship between v and iL is different from either the resistor or capacitor. The maximum
voltage across an inductor is proportional to the rate of change of current. Therefore the maximum voltage
corresponds not to maximum current but to maximum rate of change of current. A quick look at a sine curve
indicates that the maximum rate of change (slope) is when the curve crosses the axis, so we expect the current
to be 90° out of phase with the voltage.

Fig 41-6

The Kirchhoff-type voltage statement for this circuit is V cosωt = L(di/dt)

This statement is easily integrated 

The voltage and current are plotted as a function of time in Fig. 41-7 along with the phasor diagram.

Fig. 41-7



The phasor diagram is drawn by starting with VL. Now look at the adjacent peaks in the graph of v and i versus
ωt and note that v reaches its peak earlier in time than iL. Therefore we say “v leads i by 90° in an inductive
circuit.” Notice how, as the phasors rotate at this fixed 90° difference, the voltage phasor traces out the cosine
function on the horizontal axis and the current phasor traces out the sine function.

The maximum current is IL = VL/ωL = VL/XL or VL = ILXL.

The ωL term plays the role of resistance and is called inductive reactance XL.

41-2 A 120mH inductor is connected to a variable frequency ac source with maximum voltage 10V. What is the
inductive reactance at 100 Hz, and 1.0 MHz?

Solution:

The basic relation v = L(di/dt) shows that [H = V .s/A] making XL have the units of Ω.

<><><><><><><><><><><><>

41-3 At what frequency do a 65mH inductor and a 20µF capacitor have the same reactance?

Solution: When XL = XC, or  The frequency then is

This is the condition for resonance or oscillation in the L-C circuit!

<><><><><><><><><><><><>

41-4 An ac source of 100Hz and maximum voltage of 20V is connected to a 70mH inductor. What is the
maximum current? When the current is maximum, what is the voltage of the source?

Solution: First calculate the inductive reactance

XL = ωL = 2π.100Hz.0.070H = 44Ω

The maximum current is 

Look at the graphs in Fig. 41-7 and note that when the current is a maximum, the voltage is zero.



<><><><><><><><><><><><>

41-5 For the circuit described in problem 41-4, what is the current when the source voltage is 12 and
increasing?

Solution: Look at the graphs of voltage and current, and voltage versus time as shown in Fig. 41-8 and note
where on the graph the voltage is 12 V and increasing. This point (12 V and increasing) is between 270° and
360°.

The curve between 270° and 360° is a sine curve so the angle β = sin-1 (12/20) = 37°.

Therefore the point where the voltage is 12 V and increasing is 270° + 37° = 307°.

Fig. 41-8

The current at this point is 

This solution using the graphs may appear a bit cumbersome to you. The visual aspect of using the graphs,
however, is a considerable help in keeping track of where you are as you proceed through the problem. It is
easy to make the mistake of finding the arcsin of 12/20 and putting 37° into the current equation, completely
missing that this is the point where i is decreasing, not increasing. After you have done a few problems like this
you may be able to shorten the procedure.

The R-L-C Circuit

The phasor diagrams are most helpful in understanding R-L-C circuits as shown in Fig. 41-1. There are two
important points to keep in mind in the analysis of these circuits. First, the sum of the instantaneous voltages
must equal the source voltage V cosωt = vR + vL + vC. Second, since there is only one current path, the current is
everywhere the same. Voltages on the various components have different phase relationships, but the current is
the same everywhere in the circuit. The phasor diagram for a typical R-L-C circuit is shown in Fig. 41-9. Do not
try to take this in all at once. Follow along the steps in the construction of the diagram.



Fig. 41-9

Place the I phasor at the arbitrary angle ωt

Place the VR phasor over l. The voltage and current in the resistor are in phase.

Add VL = l XL leading VR by 90°.

Add VC = l XC lagging VR by 90°.

On an axis perpendicular to VR and I, VL and VC, add in a vector manner to produce VL - VC. In this example VL >
VC.

If the load is resistive, voltage is in phase with current. If the load is entirely inductive or entirely capacitive the
voltage is 90° out of phase with current. In this situation, with all elements present, the voltage is the vector-like
sum of VR and VL - VC.

In equation form

or

This suggests another resistance-like expression

which is called impedance. We now have the numeric relations between voltage, current, and the vaues of R, L,
and C.

The phase relation between V and I is seen from the phasor diagram as

To obtain a better picture of what is going on here imagine measuring the ac voltages of the source, resistor,
capacitor, and inductor, and the current in the circuit. The voltages across the resistor, capacitor, and inductor
do not add up to the source voltage! They are not in phase! These voltages will satisfy equation 41-2. The
source voltage divided by the impedance, equation 41-3, will equal the current. Finally the phase angle between
the source voltage and current comes from equation 41-4.

41-6 An R-L-C circuit with R = 200Ω, L = 0.40H, and C = 3.0µF is driven by an ac source of 20 V maximum
and frequency 100 Hz. Find the reactances, impedance, and maximum current and voltages across each of the
components.



Solution: R-L-C circuit problems can be confusing. The key to successfully solving them is to follow a logical
path through the problem. The current is everywhere the same and is determined by the source voltage and the
impedance. The impedance is determined by the resistance and the reactances, and the reactances are frequency
dependent. As you proceed through this problem be aware of the logic in the calculations. The schematic of the
circuit is shown in Fig. 41-1.

41-7 For the circuit described in problem 41-6 construct the phasor diagram and find the angle of the source
voltage with respect to the current.

Solution: The phasor diagram is shown in Fig. 41-10. Again, follow the logic in the construction

Fig 41-10

of the diagram. Draw the phasor representing I = 0.058A. at an arbitrary angle ωt. Draw the phasor representing
VR = 11.6 V in the same direction as I. Draw VL = 14.6 V leading VR by 90°. Add VC = 30.7 V lagging VR by 90°.
Complete the rectangle with side VL - VC and VR. Since VC > VL, this vector points in the same direction as VC.
The source voltage V is the diagonal of this rectangle. The phase angle is determined from equation 41-4.



The load is resistive and capacitive and (from the diagram) the source voltage lags the current by 54°.

After you are clear on the calculations go back over these last two problems and concentrate on the logic. The
biggest pitfall in R-L-C circuit problems is losing your way!

<><><><><><><><><><><><>

41-8 An R-L-C circuit consists of a 300Ω resistor, 0.15H inductor, and 4.5 µF capacitor driven by an ac source
of 800 rad/s. Find the phase angle of the source voltage with respect to the current.

Solution: Notice that the maximum voltage is not given in the problem, yet a phase diagram is to be drawn. The
problem is written this way to emphasize that it is not necessary to know the maximum source voltage to find
the phase angle. The phase diagrams so far have used voltage.

The voltage across each component is the resistance or reactance times a constant, the current. Thus the diagram
could as well be drawn with resistance and reactances as well as voltage.

Calculate the reactances:

Now draw the phasor diagram as shown in Fig. 41-11. Draw I at some arbitrary angle ωt.

Fig. 41-11

Draw R along I proportional to 300 Ω. Draw XL leading R by 90° proportional to 120 Ω. Draw XC lagging R by
90° proportional to 278 Ω. Draw XL - XC = -158 Ω. Complete the rectangle formed by R and XL - XC and draw the
diagonal, which is proportional to Z. The phase angle is



The load is resistive and capacitive, and the phase angle is -28° with the source voltage lagging the current.

Power in ac Circuits

The instantaneous power in the resistive circuit of Fig. 41-2 is

The average power is the average value of the cos2 function over one cycle. The sin2 function and cos2

functions have the same shape (area under the curve), and sin2 θ+cos2 θ= 1. The only way for sin2 θ to equal
cos2 θ and their sum to equal 1 is for cos2 θ to equal 1/2. Therefore the average value of the cosine squared
function over one cycle is 1/2, and the average power is

The most convenient associations are shown as  and 

These values of  and  used to compute the average power are equivalent to V and I used to
compute power in a dc circuit. DC voltmeters and ammeters measure V and I with the product being power, P =

VI AC voltmeters and ammeters must measure  and  , the time average of these quantities, so

power calculations in ac and dc will be the same. The  and  measurements are called the rms (root
mean square) values of voltage and current.

41-9 For the circuit described in problem 41-6 calculate the power loss in each of the components.

Solution: There is no energy loss in an inductor. Energy goes in to build up the magnetic field and is released in
the collapse of the magnetic field. Look at the curves of Fig. 41-7. The product vi averaged over one cycle adds
to zero. A similar argument can be made for a capacitor.

For the resistor the voltage is v = (11.6V)cosωt and the current is i = (0.058A)cosωt, so the power is p =
11.6.0.058Wcos2ωt. The average power is

Using the rms voltages and currents

Transformers



A transformer consists of two coils (called primary and secondary) wound one over the other with usually a soft
iron core to enhance the magnetic field or an arrangement with two coils wound on a soft iron core as illustrated
in Fig. 41-12. Based on Faraday's law the voltage induced in a coil is proportional to the number of windings.

Fig. 41-12

By varying the relative number of windings we can make either a step-up or step-down (voltage) transformer.
The relative currents in the primary and secondary are determined with a simple statement that the power in
equals the power out.

41-10 A power distribution transformer steps voltage down from 8.5 kV to 120V (both rms values). If the 120V
side of the transformer supplies 500A to a resistive load, what current is taken from the primary (high) side of
the transformer and what is the turns ratio?

Solution: First find the turns ratio 

The current is 



Chapter 42
Maxwell's Equations

The discussion of Maxwell's equations starts with four basic laws of electromagnetism, each of which has been
described in a previous chapter. These laws can be described in words, but a full appreciation of them requires a
good calculus background. Whether you have sufficient calculus background to fully appreciate the scope of
these equations or not, our discussion, which will use both words and equations, should be helpful to you.

Four Basic Laws of Electromagnetism.

The first basic law is Gauss' law for electricity.

This law states that the summation of the electric vector over a closed surface times the vector representing that
surface must add up to the total charge contained. Visualize a sphere, or irregular volume if you like, containing
charge. On each element of this surface there is an electric field vector and a vector ds normal to the surface
representing the element of surface. The dot product of these two vectors summed over the surface must equal
the charge contained.

The second basic law is Gauss' law for magnetism.

The integral in this law is the same form as Gauss' law for electricity. Again visualize a surface but with B
representing the magnetic field on the surface with the dot product of B and ds being summed over the surface.
In this case, however, the summation (integral) is equal to zero!

The third basic law is Faraday's law of induction.

This law states that magnetic flux, this construct visualized as magnetic field lines, changing with time through
a closed area equals the sum of the dot product of the electric field and the vector representing the loop (around
the area). Visualize a loop of wire normal to a changing magnetic field. An emf and current is induced in the
wire when the flux (of magnetic field) through the loop changes.

The fourth basic law is Ampere's law.

The sum of the dot product of the magnetic field and a vector representing an element of a loop around the
current is equal to the current contained. A simple visual picture is a wire carrying a current with a circle
symmetric about the wire and in a plane normal to the current. The field is constant on the circle, so this integral
reduces to the constant field times the length of the circle. This integral is proportional to the current.

These four equations are the basic laws of electromagnetism. They are unique among electric laws in that they
are valid for both stationary and rapidly moving charges. Now let's take a look at these equations from a
symmetry point of view remembering that εo and µo operationally serve only to define a system of units.



Notice that equations 42-1 and 42-2 are symmetric in that they are surface integrals, but the first is equal to
charge and the second to zero. This difference implies that there are discrete charges but no discrete magnetic
poles. Equation 42-4 describes a current of charges, but there is no corresponding current of magnetic
monopoles evident in equation 42-3. This is as we would expect, since based on equation 42-2 there are no
magnetic monopoles.

Looking at equations 42-3 and 42-4 another asymmetry is the lack of a time varying electric field term in
equation 42-4. If there are no magnetic monopoles then we expect no term corresponding to a flow of
monopoles in equation 42-3, but the question of a time varying electric field term in equation 42-4 is not so
easily dismissed. Time varying electric fields do exist.

Look at the consequence of a d ΦE/dt term in equation 42-4. To be dimensionally correct dΦE/dt) would have to
be multiplied by a constant with the same units as µoεo. Note that εo(dΦE/dt) has the units of current. Adding the
term µoεo(dΦE/dt) produces Ampere's law as modified by Maxwell.

This completes our discussion leading to Maxwell's equations as summarized below.

The Displacement Current

The most convenient way to study the time varying electric field term is with a parallel plate capacitor. Figure
42-1 shows a parallel plate capacitor with current to the plate and a growing electric field producing a magnetic
field. Note the direction of the magnetic field for the displacement current is the same as for the physical (or
real) current.

Fig. 42-1

For the connecting wire. Ampere's law is valid, 



For the space between the parallel plates the physical current is zero, so the Maxwell added term in Ampere's

law is valid and 

Both integrals can be evaluated over a circular path with radius equal to the radius of the parallel plates.

 The electric flux is simply EA, so  and equating the physical current
to the displacement current

This is the magnetic field at the edge of the capacitor. This is a small field and a transient one. The dE/dt cannot
be increased rapidly for a long time! A magnetic field due to this “additional term” in Ampere's law was
discovered over 60 years after it was first predicted by Maxwell.

The quantity  is known as the displacement current and the Ampere-Maxwell equation
is sometimes written as

In the case of the parallel plate capacitor the displacement current is equal to the physical current to the plates.

42-1 Find the displacement current and the magnetic field in a parallel plate capacitor with circular plates of
radius 5.0 cm at an instant when E is changing at 1.0×1012 V/m.s.

Solution: The displacement current is

The magnetic field is

<><><><><><><><><><><><>

42-2 Find the maximum magnetic field at the edge of a parallel plate capacitor with radius 6.0cm and separation
2.0cm connected to a sinusoidal voltage source of 1000 Hz and 200V maximum.

Solution: The basic equation is  but for this case  so



The voltage is ν=Vo sinωt and  and



Chapter 43
Electromagnetic Waves

This chapter, especially in the middle part, is very calculus intensive. Depending on your course you may want
to be selective of the sections you read. If your course does not deal with the derivations of the speed and
energy transport in an electromagnetic wave, you may want to pass over or skim the sections on “The Speed of
the Wave” and “Energy Transport in Electromagnetic Waves.” While the understanding of how electromagnetic
waves are propagated is fairly complicated, many of the problems are quite simple. Because the understanding
of how waves propagate is so important, and fairly difficult to understand, we will develop the ideas
underpinning electromagnetic wave propagation in some detail.

Generating Waves

There is a broad spectrum of electromagnetic waves generated in a variety of ways. For convenience in
discussion we will, however, concentrate on waves generated from an oscillating L-C circuit. The circuit shown
in Fig. 43-1 is an L-C circuit with some additions.

Fig. 43-1

The L-C circuit has components that produce resonance with a frequency suitable for a radio transmitter (a
typical radio frequency of 300 kHz corresponds to a wavelength of 1.0 m). The energy source keeps the circuit
oscillating. The inductor consists of a primary and secondary, with the secondary connected to a resistor. At the
natural resonance frequency of the L-C circuit, the voltage across the resistor is sinusoidal. If a wire (antenna) is
substituted for this resistor, then a sinusoidal voltage appears across the antenna. This is not a complete
description of a radio transmitter; it is intended only to illustrate that it is possible to generate a sinusoidal
voltage and current in a wire (antenna) of finite resistance.

“Can the oscillating electric field and current be detected a distance away from the antenna?” “Of course they
can.” A current in a wire produces a magnetic field, and a changing current produces a changing magnetic field
(Ampere's law). A changing magnetic field means flux is changing in space, and according to Faraday's law,
changing magnetic flux produces an electric field.

“Do these oscillating fields proceed out as waves?” “Yes, they do.” If you were floating on an inflatable raft in
a pool and you sensed a sinusoidal up and down motion of the raft, you would say a (water) wave passed by. If
you were viewing a small length of stretched rope and the small segment you were viewing executed a
sinusoidal up and down motion, you would say a sine wave traveled down the rope.

Likewise if you observed a sinusoidally varying electric field accompanied at right angles by a sinusoidally
varying magnetic field, you would say an electromagnetic wave passed by.

Electromagnetic waves are on firm theoretical ground. The above discussion presents only a plausible argument
for the existence of electromagnetic waves.

The Speed of the Waves

Start with an antenna with oscillating current. Any wave that propagates out from the antenna has velocity c.



Fig. 43-2

Consider some point along x, an axis oriented radially out from y, the direction of the oscillating current. The
oscillating current produces a sinusoidally varying magnetic field at right angles to x and in the plane (x-z)
normal to y. Construct the rectangle e-f-g-h with height a and width cdt. This is a “snapshot in space” of the
wave passing by the fixed point on x. When the current oscillations start, the oscillating magnetic field
progresses in the positive x direction taking a finite amount of time to reach the place where the rectangle is
constructed. At the instant of this “snapshot” the leading edge of the wave, as manifest by the B vector, has
progressed nearly all of the way through the rectangle.

Now apply Faraday's law  to this rectangle.

The differential change in flux over this rectangle is dΦB = Bacdt, so (dΦB/dt) = Bac.

Faraday's law,  requires E.dl be integrated around a region where ΦB is changing.

In the “Time Varying Magnetic Fields” section of Chapter 37, Faraday's Law, the area was bounded by a circle.
In this situation a rectangle is more convenient. Along e-f and g-h, E is perpendicular to dl and along f-g, E is
zero (remember the wave front is passing through the rectangular region), so the only contribution is from h-e.
If, as is shown, B is in the positive z direction, E must be in the positive y direction. Positive E along h-e will
produce a clockwise current around the rectangle and a magnetic field in the negative z-direction within the
rectangle satisfying Lenz's law. This verifies the relationship of E and B as shown in Fig. 43-2. Integrating
counterclockwise around the rectangle, the only contribution to the integral is -Ea. Faraday's law applied to this
rectangle yields

The speed of the wave is the ratio of the oscillating electric and magnetic fields.

43-1 A radio signal at a certain point has a measured maximum electric field of 5.0 × 10 -3V/m. What is the
maximum magnetic field?

Solution: The magnetic field maximum is at right angles to the electric field and has magnitude

<><><><><><><><><><><><>



Now apply Ampere's law using only the displacement term. 

Fig. 43-3

Figure 43-3 shows the relationship of E and B. The procedure is much the same as before. The only
contribution to the integral is along one side of the rectangle, so the integral becomes Ba (again integrating
counterclockwise).

The differential flux is dΦE = Eacdt.

Ampere's law then is Ba = µoεoEac, or B = µoεoEc.

Substituting E = cB, B = µoεoc2B, so µoεo = 1/c2, or

The velocity of electromagnetic waves (including light) is derivable from static constants!

There are three conclusions to this short discussion.

1. The electric and magnetic fields are related by the velocity; E = cB.

2. The velocity is 

3. The wave moves in a direction determined by E × B.

43-2 How long does it take for an electromagnetic wave to travel to the moon, 3.8 × 108 m away?

Solution:

<><><><><><><><><><><><>

43-3 How far does light travel in 1.0ns (1.0 × 10-9 s)?



Solution: 

Energy Transport in Electromagnetic Waves

When electric and magnetic fields are absorbed in material objects, energy is transferred from the wave to the
material. This is true for radio waves impinging on antennas, infrared waves absorbed in water molecules, or
microwaves into your lunch.

The discussion of energy transport starts with the energy density expressions from static electric and magnetic
fields. (See the “Energy Storage” section in Chapter 28, Capacitance, and the “Power and Energy Storage”
section in Chapter 38, Inductance.) The total energy density for a region of space where E and B fields are
present is

In the electromagnetic wave E = cB and E2 = c2B2 so B2 = µoεoE2 allowing rewriting

This last expression shows that while the B field is numerically smaller than the E field, the energy density
associated with both fields is the same.

Referring to Fig. 43-4, the differential amount of energy in the volume with cross-sectional area A and length
cdt is

Fig. 43-4

the expression dU/dt is the energy transported per time over the area A. The more useful expression is the
energy flowing across an area per unit of time



The alternative forms come from E = cB and  The units of S are energy per unit time per unit area
or power per unit area.

The Poynting Vector

The magnitude and direction of the energy flow rate is defined by the Poynting Vector.

This vector, like the flow rate, varies with time. The average value of the magnitude of the Poynting vector is
the intensity. The average value of the magnitude of S is

The average value of sin2 ωt  is 1/2, so

43-4 Take the intensity of sunlight at the earth's surface as 600W/m2. Assuming 100% collection efficiency,
how much energy is collected on a 1.0m2 panel exposed to this amount of sunlight for 10 hours?

Solution: The key to getting problems involving energy, power, and intensity correct is to watch the units
closely. In this case notice how the units dictate how to make the calculation.

Another way to do this problem is to find the energy in W.hr rather than Joules.

This is a strange looking unit, but it gives us a feel for the amount of energy that can be collected this way. This
6000 W.hr would light sixty 100W light bulbs for an hour or run a 1.0kW microwave oven for 6 hours.

<><><><><><><><><><><><>

43-5 The maximum value of electric field 2.0m away from a spherically symmetric source is 1.8 V/m. Find the
maximum value of magnetic field, average intensity, and power output of the source.

Solution: The magnetic field is from 

The average intensity is from



As an exercise work through the units in this problem.

The total power is the power per unit area at 2.0 m radius times the total area.

Fig. 43-5

<><><><><><><><><><><><>

43-6 What is the maximum electric field strength and intensity of a 500W spherically symmetric light source at
10m radius?

Solution: The area of a sphere 10m in radius is A = 4π(10m)2 = 1.2×103 m2. The entire 500W is delivered to
this area. The power, intensity, and area are related by

The electric field intensity comes from

Radiation Pressure.

When an electromagnetic wave is absorbed by a material, charges are accelerated by the electric field transverse
to the direction of the wave. The electric and magnetic field vectors are shown in Fig. 43-4. The electric field
vector is pointing in the +y direction, and this is the direction a positive charge would accelerate. A charge
moving in the +y direction acted on by a magnetic field in the +z direction has a (v × B) force in the +x
direction, the direction of the wave. The Poynting vector always points in the direction the wave is traveling, so
the net force on any charges in the material is in the direction of the wave.

This force can be associated with a momentum. This momentum is



This is the momentum absorbed by a non-reflecting surface. For a completely reflecting surface the momentum
transfer is twice this value. Think of a tennis ball striking a surface and sticking or striking a surface and
rebounding with the incident velocity.

43-7 A light beam with energy flux 20W/cm2 falls normal onto a completely reflecting surface of 2.0cm2. What
is the force on this reflector?

Solution: The average force is F = ∆p/∆t and ∆p = 2∆U/c, but ∆U = S A∆t, so



Chapter 44
Reflection, Refraction, and Polarization

In the study of reflection and refraction it is very convenient to depict light as rays. A light ray represents the
path of a thin beam (ray) of light. This ray construct is very convenient in understanding reflection and
refraction as well as images formed by mirrors and lenses.

Reflection and Refraction

When light strikes a surface such as an air-glass or air-water interface, part of the incident light is reflected and
part is refracted. Reflection of light at any interface follows a very simple law. The angle of incidence equals
the angel of reflection with these angles measured from the normal to the surface. Incident and reflected rays
are shown in Fig. 44-1.

Fig. 44-1

44-1 A ray of light is incident on a reflecting surface at 70° with respect to the surface. What is the angle of the
reflected ray?

Solution: The 70° with respect to the surface is 20° with respect to the normal so the reflected beam is 20° from
the normal.

The refracted (or bent) ray is the one that enters the new medium. The angular relationship between the incident
and refracted ray is given by Snell's law

where the n1 and n2 are the indexes of refraction of the two media. The index of refraction is a property of the
material. Figure 44-1 contains some index of refraction values.

In addition to describing refraction, the index of refraction is also the ratio of the velocity of light in vacuum to
the velocity of light in the indexed medium.

44-2 What are the angles of reflection and refraction for a light ray in air incident on glass at an angle of 35°?

Solution: The angle of incidence is measured from the normal so the angle of reflection is 35° The angle of
refraction is from Snell's law n1 sin θ1 = n2 sin θ2



<><><><><><><><><><><><>

In passing from a medium of lower index of refraction to one with higher index of refraction the light bends
toward the normal and vice versa. This is best illustrated in problem 44-3.

44-3 A light ray in water is incident on the water-air interface at an angle of 45°. What is the angle of reflection
in the water and refraction into the air?

Fig 44-2

Solution: The problem is diagrammed in Fig. 44-2. The incident angle equals the reflected angle, so θ1 = 45°
The refracted angle is from Snell's law

This last problem suggests that there is an angle of incidence where there is no refracted ray; the refracted ray
follows the surface. Beyond this critical angle, as it is called, all light will be reflected back into the water.
Fiber-optic cable is made of light transmitting material with an index greater than one, so that light injected at
the end of the cable will be internally reflected many times over its entire length.

44-4 Find the critical angle for a fiber optic material with index 1.50.

Fig 44-3

Solution: The critical angle is the one where the angle of refraction is 90°. Applying Snell's law

Any beam that strikes the fiber-air interface at an angle greater than 42° will be internally reflected down the
fiber.

<><><><><><><><><><><><>



Figure 44-4 shows a ray of light incident on a equilateral triangular glass prism at an angle of 54°.

Fig. 44-4

Applying Snell's law to find the refracted ray angle yields 1.00 sin 54° = 1.62 sin θr, or θr = 30°. This means that
the ray travels parallel to the base inside the prism and is refracted at 54° on exit.

Now change the problem slightly by having the ray incident parallel to the base of a prism with the base angles
70°.

Fig. 44-5

From the geometry the angle of incidence for the ray entering the prism is 20°, and applying Snell's law
1.00sin20° = 1.62sinθr, θr = 12°. Again from the geometry, the angle of incidence for the ray leaving the prism
is 28°, and applying Snell's law 1.62sin28° = 1.00sinθr, θr = 50°. A prism bends light incident parallel to its base
toward the base.

If a collection of parallel rays were incident on the face of this prism they would all be refracted toward a line
extending from the base. Further, if the incident and exit faces were curved, all parallel rays could be focused at
one point. Two curved-face prisms placed base-to-base are a lens of sorts focusing parallel rays to a single
point.

The index of refraction, or wave speed, depends slightly on the wavelength of the light. A ray of sunlight
passing through a prism exhibits the dispersion effect, whereby different wavelength components of the
sunlight are refracted at different angles producing a rainbow of colors from red to violet.

44-5 Light is incident at an angle of 35° on a slab of glass 2.0cm thick. Part of the light travels through the glass
and part along its original direction beside the glass. Find the path of the two rays, the velocity of the ray in the
glass, and the time difference between the two when they emerge from the opposite side of the glass. The
geometry is shown in Fig. 44-6.



Fig 44-6

Solution: Apply Snell's law to find the path through the slab. 1.00sin 35° = 1.62sinθr, or θr=21°. Because of
symmetry, the ray through the slab exits parallel to the original ray. The velocity of the ray in the glass is from
n = c/v, or v = c/n=3.0 × 108 m/s/1.62=1.85×108 m/s. Now that the velocities are known the time difference
requires finding the distance the rays travel.

The distance a (the path through the slab) comes from cos21° = 2.0cm/a, or a = 2.14 cm. Construct a line
perpendicular to the two rays at the point where the refracted one leaves the slab.

The distance b in the original ray direction comes from cos14° = b/2.14cm, or b = 2.08cm.

The time for the refracted beam is τr = 0.0214m/1.85 × 108 m/s = 11.6 × 10-11S.

The time for the unaltered beam is τ=0.0208m/3.0 × 108 m/s = 6.9 × 10-11S.

The time delay is 4.7 × 10-11 S.

Polarization

Light from a light bulb or the sun is circularly polarized. This means that if you could look at the electric
vectors there would be no preferred direction. The electric vectors would be randomly oriented in space.
Polarization is described in terms of electric vectors rather than magnetic vectors. A radio transmitting antenna
that is vertical produces waves with vertical electric vectors, and the radiation from this antenna is vertically
polarized.

Polarization is usually studied in the context of light. There are two ways to polarize light. It can be polarized
by passing through a material that contains molecules all oriented in the same direction that absorb the electric
vector (in this one direction) in the light. These materials are called polaroids. Polaroid sun glasses are made of
a polaroid that absorbs the electric vector in one direction.

Light, and other electromagnetic waves are more or less polarized by reflection, depending on the angle of
incidence and the index of refraction. When unpolarized or circularly polarized light is incident from air onto
water the reflected beam is of lowered intensity and polarized with the electric vector parallel to the reflecting
surface. The refracted beam is transmitted with a diminished intensity and is partially polarized by the reduction
of the electric vector in the plane of the reflecting surface. The angle of incidence for complete polarization
occurs when the angle between the reflected and refracted beams is 90°. The geometry of the situation is shown
in Fig. 44-7.

The criterion for complete polarization is that θr + θp = 90°. Snell's law requires that ninc sin θp = nrefr sinθr, but θr

= 90° - θp and sin θr = sin(90° - θp) = cosθp, so nincsinθp = nrefr cosθp or



Fig. 44-7

This polarization law is known as Brewster's law, and the angle of polarization is called the Brewster angle.
In working problems be careful not to invert the fraction of the indexes of refraction.

44-6 What is the polarization angle for light reflected from water?

Solution:

<><><><><><><><><><><><>

44-7 A beam of unpolarized light in water is incident on what is reported to be diamond. By means of polaroids
the angle (of incidence) for complete polarization is determined to be 61°. Is this diamond?

Solution: For light in water reflected from diamond the Brewster angle should be

From the indexes of refraction given in Fig. 44-1 we conclude that this is diamond.



Chapter 45
Mirrors and Lenses

The subject of mirrors and lenses is difficult to treat briefly first because for a thorough discussion there needs
to be considerable attention to sign convention and second because different instructors and authors approach
the subject with slight, but very significant differences that impact the working of problems.

The only way to become proficient in working with lenses and mirrors is to place the sign conventions
appropriate to your course on a card in front of you and do problems drawing the rays and working the
calculations. Be sure that you know the sign conventions and practice doing sample problems before taking any
tests on mirrors or lenses. Signs will be your major (perhaps only) source of error. Sample sign conventions for
mirrors and lenses are given below.

Sign Conventions for Mirrors

o is positive if object is in front of the mirror
o is negative if object is in back of the mirror

i is positive if the image is in front of the mirror
i is negative if the image is in back of the mirror

f is positive if the center of curvature is in front of the mirror
f is negative if the center of curvature is in back of the mirror

Sign Conventions for Lenses

o is positive if the object is in front of the lens
o is negative if the object is in back of the lens

i is positive if the image is in back of the lens
i is negative if the image is in front of the lens

f is positive for a converging lens
f is negative for a diverging lens

Mirrors.

An object placed in front of a plane mirror appears to an observer to be behind the mirror.

Fig. 45-1



Because of the law of reflection, divergent rays intercepted by the observer on reflection from the mirror appear
to come from behind the mirror. The object distance, p, is numerically equal to the image distance, q. The
image is called a virtual image because the light does not physically come from the image. A real image is one
where the light comes from or passes through the image.

45-1 A light source is 4.0cm in front of a plane mirror. Where does an observer looking into the mirror see the
image and is it real or virtual?

Solution: The image is 4.0cm behind the mirror. It is a virtual image because light does not pass through this
image point.

A concave (converging) spherical mirror as shown in Fig. 45-2 can be analyzed by rays.

Fig 45-2

An object of height h placed at o, the object distance from the concave mirror, will produce a smaller image, h'
at i, the image distance, according to the formula

where R is the radius of curvature and f(= R/2) is the focal length. The magnification is

The minus sign in the definition indicates that the image is inverted.

Draw a ray from the top of the object through the center of curvature (C in Fig. 45-2). Next draw a ray to the
point where the principal axis (the horizontal line through C) intersects the mirror reflecting this ray back to
intersect the one drawn previously. The intersection of these rays defines the top of the object. Drawing these
rays requires experience. Set up several situations and draw the ray diagrams to become familiar with the
procedure.

45-2 For a spherical concave mirror of 12cm radius of curvature describe the image of a 2.0cm height object
placed 20cm on the center line of the mirror according to Fig. 45-2.

Solution: The image is inverted. The ray diagrams show this. Using the radius of curvature and the object
distance find the image distance from



The magnification is from 

The height of the image is from  or h'=-0.86cm.

The image is 8.6cm from the mirror, inverted (minus sign) and real (rays pass through image).

<><><><><><><><><><><><>

When the object is at infinity (very far away) the mirror equation reduces to 1/i = 2/R, and we can say that the
rays from infinity are focused at R/2. This defines the focal length as f = R/2.

A convex (diverging) spherical mirror is illustrated in Fig. 45-3.

Fig. 45-3

Objects placed in front of a convex mirror appear to come from behind the mirror, and they are smaller. First
draw a ray from the top of the object parallel to the principal axis and reflect it from the mirror. This ray appears
to come from the focus (behind the mirror). Next draw a ray so as to produce a reflected ray parallel to the
principal axis of the mirror. The extension of this ray intersects the extension of the first one locating the top of
the image.

The equations for concave mirrors also work for convex mirrors if a sign convention is adopted. Lengths where
the light moves (to the left of the mirrors in Figs. 45-2 and 45-3) are positive, and lengths on the other side of
the mirror (to the right of the mirror in Fig. 45-3) are negative. Lengths are measured (positive and negative)
from the intersection of the principal axis and the mirror. These positive and negative regions are often referred
to as the front and the back sides of the mirrors.

45-3 For a spherical convex mirror of 14cm radius of curvature, describe the image of a 2.5cm object placed
30cm out on the principal axis of the mirror.

Solution: Here is where we get into the signs. The focus and the image are on one side of the mirror and the
object is on the other side. Therefore we take the focus as negative and expect the image distance to be
negative. The image distance comes from equation 45-1

The magnification comes from equation 45-2 



The height of the image is from 

The minus sign for the image distance indicates that the image is behind the mirror, or on the same side as all
the other minus signs. The plus sign for the magnification indicates that the image is erect (not inverted). The
image is virtual.

Lenses

There are two types of thin lenses, converging and diverging, as shown in Fig. 45-4.

Fig 45-4

The converging lens converges parallel rays to a point called the focus while a diverging lens refracts rays to
make them appear as to come from a focus. The sign conventions become more involved for lenses than for
mirrors. Rather than set out a sign convention, we will handle the signs in the context of each problem. The
relationship between image distance, object distance and focal length is the same as for mirrors (equation 45-1).

45-4 A converging lens of focal length 8.0cm forms an image of an object placed 20cm in front of the lens.
Describe the image.

Fig. 45-5

Solution: Draw a ray from the top of the object parallel to the axis then through the focus. Next draw a ray from
the top of the object through the center of the lens to intersect the first ray. This locates the top of the object.
Use equation 45-1 to find the image distance.

The magnification is (-) image distance over object distance or 

The image is located 13cm on the side of the lens opposite the object with magnification 0.67. It is inverted
(minus sign) and real (rays pass through image).

45-5 A diverging lens has a 14cm focal length. Describe the image of a 4.0cm object placed 40cm from the lens.



Fig. 45-6

Solution: Draw a ray from the top of the object to the lens parallel to the principal axis and refract it back to the
focus. Next draw a line from the top of the object through the center of the lens. The intersection of these rays
locates the top of the object. The image distance is from equation 45-1.

The negative sign for the focal length is because this is a diverging lens. The image distance is negative because
it is on the same side of the lens as the object (opposite to the converging lens). The magnification is 10/40 =
0.25.

The image is 0.25×4.0cm=1.0cm high, erect, virtual, and appears to come from a point 10cm from the lens on
the same side as the object.

Go back over the problems in this chapter paying particular attention to the signs. As an exercise change the
numbers in these problems and work them through until the sign conventions are clear in your mind. As you do
more problems the logic of the sign convention listed on the first page of this chapter will become clear.



Chapter 46
Diffraction and Interference

The wave nature of light is used to explain the several diffraction and interference phenomena discussed in this
chapter.

Double Slit Diffraction

Figure 46-1 shows the setup for the classic Young's double slit experiment first performed around 1800.

Fig. 46-1

Monochromatic light passes through a sufficiently narrow slit to produce a coherent source for the double slits.
The coherent (in phase) light spreads out from each of the slits creating an interference pattern on the screen.
The geometry for the interference is shown in Fig. 46-1. Destructive interference occurs when the path length
differs by one-half wavelength and constructive interference occurs when the path length is an integral number
of wavelengths. From the figure we can write the criteria for constructive interference as

The distance from the central maxima (opposite the center of the two slits) to the first bright fringe on the
screen is related to the angle via tan θ = ym/R. For small angles, which is the case with the Young's experiment,
sinθ ≈ tanθ = θ, so equation 46-1 can be rewritten as

Historically this experiment was used to measure the wavelength of light.

46-1 A Young's experiment is set up with slit separation 2.0 × 10-4 m, screen distance 0.80m, and distance from
central maxima to second bright fringe 3.9 × 10-3 m. What is the wavelength of the source?

Solution: 

<><><><><><><><><><><><>

46-2 In a different Young's experiment with 488nm light the second dark fringe is 1.2 × 10-3 m away from the
center of the central bright fringe. The screen is 1.2m from the slits. What is the separation of the slits?



Solution: This second dark fringe corresponds to 3/2 of a wavelength in path difference. One wavelength path
difference is 2/3 of the 1.2 × 10-3 m or 8.0 × 10-4 m. This number now fits with equation 46-2 (one wavelength
path difference), and solving for d

Single Slit Diffraction

The intensity distribution pattern for single slit diffraction is similar to the pattern for double slit diffraction.
The geometry and analysis, however, are quite different. Coherent light incident on a narrow slit (100 to 1000
wavelengths wide) produces a fringe pattern as shown in Fig. 46-2.

Fig. 46-2

In the analysis of single slit, or Fraunhofer, diffraction we will use the dark fringes. The slit of width a is
viewed as a region where interference occurs between light at the top of the slit and the middle of the slit. The
particular situation for the first dark fringe obtains for corresponding pairs of source points separated by a/2
across the width of the slit. The criterion for dark fringes is

Again sinθ is approximately the same as tanθ, which is approximately the same as θ. So rewrite equation 46-3
with this approximation as

where m corresponds to the number of the dark fringes away from the central maxima.

46-3 Monochromatic light is incident on a 4.0 × 10-4 m wide slit producing a Fraunhofer diffraction pattern on a
screen 1.5m away. The distance from the central maxima to the second dark fringe is 3.4 × 10-3 m. What is the
wavelength of the light?

Solution: Reworking equation 46-4 yields 

<><><><><><><><><><><><>



46-4 Light from a He-Ne laser of 633nm is incident on a 2.0 × 10-4 m wide slit. What is the width of the central
maxima (the distance between the dark fringes on either side of the central maxima) on a screen 2.0m away.

Solution: Rearranging equation 46-4, the distance to the first dark fringe is

The width of the central maxima is two times this value or 1.3 × 10-2 m.

The Diffraction Grating

A diffraction grating consists of multiple slits as shown in Fig. 46-3. When light is incident on this arrangement
constructive interference occurs when the path difference between adjacent slits is mλ. Increasing the number of
slits produces two effects: the intensity of each interference maximum increases, and the width of each
interference maximum decreases. This makes the grating a very convenient tool for the study of the various
component wavelengths (spectra) of gases.

Fig. 46-3

46-5 A grating with 2000 lines per cm is illuminated with a hydrogen gas discharge tube. Two of the hydrogen
lines are at 410 and 434 nm. What is the first order spacing of these lines on a screen 1.0 m from the grating.
The experimental arrangement is shown in Fig. 46-4.

Fig. 46-4

Solution: The phrase “first order” refers to the first maxima.

First find the spacing 1.0 × 10-2 m/2000 lines = 5.0 × 10-6 m.

For the 410 nm line 

For the 434 nm line 



The lines are separated by 5 mm on the screen.



Chapter 47
Special Relativity

The special theory of relativity is based on two postulates.

1. The laws of physics are the same in all inertial reference frames.

Inertial frames are reference (coordinate) frames moving at constant velocity with respect to one another; that
is, they are not accelerating.

2. The speed of light is the same in all inertial frames.

These two postulates lead to very interesting and highly significant conclusions concerning simultaneity and
how we measure the fundamental quantities of length, mass, and time. These discussions, though very
interesting, are inappropriate for a problems book, so we will go directly to the consequences of special
relativity as it impacts our understanding of physics.

The concepts and calculations of special relativity require a change in how we view the world. Many of the
things we study in special relativity may go against our intuition, but remember, intuition is often wrong and
even if it were correct we have no experience to base our intuition on when dealing with particles approaching
the speed of light where relativistic effects are observable. How many of Galileo's colleagues intuitively “knew”
that when he dropped those two different sized balls from the Tower at Pisa the heavier one would reach the
ground first? Success in understanding Special Relativity requires first that you rid your mind of intuitive
knowledge based on what could be called “low velocity experience.” As you study Special Relativity you will
encounter situations where you will be challenged to look at the postulates and change your view of the world.

Time Dilation.

Time intervals are different in different (moving) inertial frames. Place a light source, mirror, and detector in a
moving vehicle as shown in Fig. 47-1. An observer in the moving vehicle measures the time for a light pulse to
move from the source to the mirror and back to the detector as the distance traveled divided by the velocity of
light, so ∆t0 = 2d/c. The zero subscript indicates that this time is measured by an observer in the same frame
where the event is taking place. This is also called the proper time.

Fig 47-1

An observer in another inertial frame observes the vehicle moving at a velocity v (see Fig. 47-2) and over the
time interval of the event observes that the detector has traveled a distance v∆t.

Fig. 47-2



The total distance the light has traveled is 

The time interval is 

Remember, c is the same to all observers regardless of inertial frame. The two times can be related with d =
c∆to/2 so that

The external observer of an event taking place in a moving reference frame, the one who measures ∆t, always
sees an event as taking longer than the stationary observer, the one who measures ∆to, in the frame moving with
the event.

47-1 You are in a railroad car moving at constant velocity of zero with respect to the surface of the earth. What
do you measure as the time it takes for a coin to drop 1.0m to the floor of the railroad car? What does an
observer in another railroad car traveling at a constant 25m/s measure for this time?

Solution: You apply  and observe 

The moving observer measures a time given by equation 47-1. For small v/c the best way to make this
calculation is to use a binomial expansion of the radical (see, the Introduction, Mathematical Background).

The first, and largest, relativistic correction term is 

This means that the correction is ∆t = ∆to(1+3.5 × 10-15)s. Time measurement this precise is beyond the
capability of the cesium clocks. This is an unobservable effect.

<><><><><><><><><><><><>

47-2 For the situation of the previous problem take the moving observer from the train to a 2500m/s jet plane
and then to a rocket ship traveling at 0.90c. (It is common, and very convenient in relativistic calculations, to
express velocity as a fraction or decimal times c.)

Solution: Again using the binomial expansion and looking at the first term

This small a time difference is observable but it is a difficult experiment.



For the rocket ship traveling at 0.90c, use equation 47-1 directly.

The observer in the rocket ship measures the time for the falling coin as 1.0s, over twice what the stationary
observer sees. These two problems illustrate how relativistic effects are observable only as relative velocities
approach c.

47-3 A “strange particle” is observed to move at 0.96c and have a lifetime of 2.0 × 10-8 s. What is the lifetime of
the particle in its own reference frame?

Solution: In equation 47-1 ∆to is the (proper) time an observer traveling with the “strange particle” would
measure so find

Length Contraction

The time dilation leads to a length contraction with velocity. Consider a vehicle moving at velocity v between
two stars with one observer in the vehicle and another at a fixed (with respect to the stars) point. The external
observer measures the (proper) distance between the stars as Lo, observes the velocity of the vehicle as v, and
writes the time interval as ∆t = Lo/v. The time interval ∆t is not a proper time because measurement of ∆t would
required synchronized clocks at both stars. The observer in the vehicle sees the stars moving at t and measures a
(proper) time interval ∆to. This observer determines the distance between the stars as L = v∆to. Write these two
equations as a fraction

 and with 

The length measured by a moving observer is contracted by a factor equal to 

47-4 In a soaring space ship (a vehicle capable of both space flight and conventional aircraft flight) you return
from a space journey to find a new landing runway. Passing over this runway at 0.92c you measure its length as
1960m. What is its length at your landing speed of 200 m/s?

Solution: At 200 m/s there is no observable relativistic effect. Use equation 47-3 to find the length of the
runway at your landing speed.

47-5 How fast must a meter stick be traveling relative to your reference frame for you to observe a 2%
contraction?

Solution: Use equation 47-3 with L = 0.98Lo



Relativistic Momentum

At “low velocities” a force applied to a particle produces an acceleration according to the familiar F = d/dt (mv)
= m(dv/dt). As the velocity of the particle approaches c, the momentum becomes velocity dependent with the
force statement taking on the form

The most convenient interpretation is to associate the  with the mass and say that the effective mass
of a moving particle is

where mo is the rest mass, measured with the mass not moving in the inertial frame where the measurements are
made.

47-6 What is the effective mass of an electron moving at 0.80c?

Solution: 

<><><><><><><><><><><><>

47-7 Intergalactic space travelers need to know the relative velocities and masses of their space ships. Each
ship, therefore, has a 1.0m long bar painted on the side of the ship alongside their rest mass. As you pass by a
ship you measure this 1.0m bar as 0.93m. What is your relative velocity? You also observe their rest mass
printed as 365,000kg. What is their mass relative to you? What does an observer in the other ship measure for
your 1.0m bar?

Solution: The length you observe is  where Lo is the 1.0m, the length an observer at rest with
respect to the vehicle would measure, and L is the length you measure so

The relativistic mass you observe is

Observers in the other space ship measure your bar as 0.93m and relative speed as 0.37c.



<><><><><><><><><><><><>

As an exercise find the effective mass of an electron at 0.999c and at 0.99999c. As the velocity approaches c,
the effective mass approaches infinity implying the necessity of an infinite force to reach c. This shows the
theoretical impossibility of material objects traveling at c or beyond.



Physical Constants

Name Symbol Value

Acceleration due to gravity g 9.8m/s

Speed of light c 3.0×108m/s

Electron-volt eV 1.6×10-19J

Electronic charge e 1.6×10-19C

Gravitational constant G 6.7×10-11N.m2/kg2

Boltzmann's constant k 1.4×10-23J/K

Avogadro's number NA 6.0×1023 molecules/mole

Gas constant R 8.3J/mole.K

Mass of electron me 9.1×10-31kg

Mass of neutron or proton mn or mp 1.7×10-27kg

Mechanical equivalent of heat 4.2J/cal

Permittivity of free space εo 8.8×10-12C2/N.m2 (F/m)

1/4 πεo 9.0×109N.m2/C2

Permeability of free space µo 4π×10-7Wb/A.m(H/m)

Speed of sound 343m/s

Standard atmospheric pressure latm 1.0×105Pa

Conversions



1kg=1000g=0.068slug 1m=100cm=3.3ft 1nm=10-9m=10Å

1m/s=3.3ft/s 1rad=57.3° πrad=180°

1N=105dyne=0.221b 1cal=4.2J leV=1.6×10-19J

1hp=750W=550ft.lb/s 1J=107 erg=0.24cal=0.74ft.lb
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